

UNIVERSITY OF GOTHENBURG

Transport Accelerated Simulated Annealing

Vincent Molin, Axel Ringh, Moritz Schauer, Akash Sharma Department of Mathematical Sciences

Simulated annealing

Sampling and optimization are deeply connected, effective algorithms trade-off exploration and exploitation.

 $\begin{array}{c} \text{Exploration} \\ \text{Sampling} \end{array} \triangleleft \triangleleft \swarrow & \qquad \triangleright \triangleright \end{array} \begin{array}{c} \text{Exploitation} \\ \text{Mode seeking} \end{array}$

For a potential $U: \mathbb{R}^d \to \mathbb{R}$ we consider the optimization problem

$$x^* = \arg\min_{x\in\mathbb{R}^n} U(x)$$

and the Gibbs measure $\mu_{\beta}(\mathrm{d}x) \propto \exp(-\beta U) \,\mathrm{d}x$, where $\mu_{\beta} \xrightarrow{w} \delta_{x^*}$ as $\beta \to \infty$.

Following the Gibbs curve

Can we modify a Markov process to follow the mass flow prescribed by the Gibbs curve?

Specifically, can we find a deterministic velocity field v_t such that

 $\partial_t \mu_t + \nabla \cdot (v_t \mu_t) = 0?$

Denote by $(\mathcal{P}_2(\mathbb{R}^d), W_2)$ the metric space of probability measures on \mathbb{R}^d equipped with the Wasserstein-2 metric

View $t \mapsto \mu_t$ as a *curve* in this metric space. If this curve is sufficiently well-behaved the we can define a *tangent-like* object v_t , where we think of " $\mu'_t = v_t$ " as the flow of probability mass.

Theorem

Under suitable conditions on U, the curve $t \mapsto \mu_t$ is an absolutely continuous curve in the metric space $(\mathcal{P}_2(\mathbb{R}^d), W_2)$. Hence there exists a time dependent velocity field v_t such that

 $\partial_t \mu_t + \nabla \cdot (v_t \mu_t) = 0.$

Moreover, the minimal v_t is the derivative of the optimal transport maps from μ_t to $\mu_t+h,$ in the sense that

As β increases, probability mass concentrates on the global minima of U Simulated annealing: Search for x^* by increasing β_t over time and successively sampling from $\mu_t := \mu_{\beta_t}$.

The classical diffusion based simulated annealing process is given by

$$\mathrm{d}X_t = -\nabla U(X_t)\,\mathrm{d}t + \sqrt{\frac{2}{\beta_t}}\,\mathrm{d}W_t$$

Converges to μ_{∞} if β_t grows at most logarithmically in t.

A greedy Bouncy Particle Sampler

A Markov process $(X_t,W_t)\in \mathbb{R}^d\times \mathbb{R}^d$ with piecewise deterministic trajectories governed by

 $\operatorname{d}(X_t,W_t) = (W_t,0)\operatorname{d}\! t,$

until a random bounce event occurs, with

 $P(\text{Bounce} \in [\tau, \tau + h]) = \min(0, \langle W_\tau, \nabla U(X_\tau) \rangle)h + o(h)$

after which the velocity is reflected on a contour line of the potential. BPS bouncing on a contour line, greedier in red

The velocity after reflection is given by

$$\begin{split} RW_t &= W_t - \frac{2 \langle W_t, \nabla U(X_t) \rangle}{\langle \nabla U(X_t), \nabla U(X_t) \rangle} \nabla U(X_t) \\ &= W_t - 2 \mathrm{Proj}_{\nabla U(X_t)} W_t \end{split}$$

Previously we have considered a greedier reflection kernel

$$R_{\alpha}W_t = RW_t - \alpha \nabla U(X_t)$$

Ideally α should capture the flow of probability mass as the temperature changes.

 $v_t(x) = \lim_{h \to 0^+} h^{-1} \Big(T_{\mu_t \to \mu_{t+h}}(x) - \operatorname{Id}(x) \Big).$

...with superimposed stochastic dynamics

Now, we combine

- The velocity field v_t drives the distribution along the curve μ_t

- The stochastic dynamics $\mathcal A$ mixes any distribution towards μ_t

Illustratively, we think of a process with generator

 $\mathcal{A}^o f = \langle v, \nabla f \rangle + \mathcal{A} f.$

A particle approximation scheme

Problem: The velocity field v_t is in general not available in closed form.

We sketch out a simple **quasi-independent particle scheme** inspired by the true dynamics. In short:

- Simulate a population of particles according to *independent* stochastic dynamics \mathcal{A}_t and an approximative velocity field \hat{V} .
- At finite intervals h > 0, create empirical estimators $\hat{\mu}_t$ and $\hat{\mu}_{t+h}$, the latter by reweighting.
- Estimate a transport map \hat{T}_t by solving the transport problem from $\hat{\mu}_t$ to $\hat{\mu}_{t+h}$ and update \hat{V} accordingly.

Simulation on a double well potential on $\mathbb R$ with linear cooling:

The continuity equation

For any Markov process targeting μ_{β} , with generator \mathcal{A}_{β} and initial distribution ρ_0 , the continuity equation for the evolution of the distribution ρ_t is given by the Kolmogorov forward equation

$$\mathcal{A}_{\beta}^{*}\rho_{t}=\partial_{t}\rho_{t}$$

For the simulated annealing process, think of $\mathcal{A}_t \coloneqq \mathcal{A}_{\beta(t)}$ as a time inhomogeneous generator for this process. By stationarity of \mathcal{A} , we have that

$$\mathcal{A}_t^*\mu_t = 0 \neq \partial_t\mu_t$$

 W_2 -distance to the Gibbs curve

With v-estimation, 5 particles

Contact: molinv@chalmers.se Made with typst

