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Simulated annealing
Sampling and optimization are deeply connected, effective algorithms trade-off exploration and
exploitation.
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For a potential 𝑈:  ℝ𝑑 → ℝ we consider the optimization problem

𝑥∗ = arg min
𝑥∈ℝ𝑛

𝑈(𝑥)

and the Gibbs measure 𝜇𝛽(d𝑥) ∝ exp(−𝛽𝑈) d𝑥, where 𝜇𝛽 →𝑤 𝛿𝑥∗  as 𝛽 → ∞.

As 𝛽 increases, probability mass concentrates on the global minima of 𝑈

Simulated annealing:   Search for 𝑥∗ by increasing 𝛽𝑡 over time and successively sampling from 𝜇𝑡 ≔
𝜇𝛽𝑡 .

The classical diffusion based simulated annealing process is given by

d𝑋𝑡 = −∇𝑈(𝑋𝑡) d𝑡 +√ 2
𝛽𝑡
d𝑊𝑡

Converges to 𝜇∞ if 𝛽𝑡 grows at most logarithmically in 𝑡.

A greedy Bouncy Particle Sampler
A Markov process (𝑋𝑡,𝑊𝑡) ∈ ℝ𝑑 ×ℝ𝑑 with piecewise deterministic
trajectories governed by

d(𝑋𝑡,𝑊𝑡) = (𝑊𝑡, 0) d𝑡,

until a random bounce event occurs, with

𝑃(Bounce ∈ [𝜏, 𝜏 + ℎ]) = min(0, ⟨𝑊𝜏 , ∇𝑈(𝑋𝜏)⟩)ℎ + 𝑜(ℎ)

after which the velocity is reflected on a contour line of the potential. BPS bouncing on a contour line,
greedier in red

The velocity after reflection is given by

𝑅𝑊𝑡 = 𝑊𝑡 −
2⟨𝑊𝑡, ∇𝑈(𝑋𝑡)⟩

⟨∇𝑈(𝑋𝑡),∇𝑈(𝑋𝑡)⟩
∇𝑈(𝑋𝑡)

= 𝑊𝑡 − 2Proj∇𝑈(𝑋𝑡)𝑊𝑡

Previously we have considered a greedier reflection kernel

𝑅𝛼𝑊𝑡 = 𝑅𝑊𝑡 − 𝛼∇𝑈(𝑋𝑡)

Ideally 𝛼 should capture the flow of probability mass as the temperature changes.

The continuity equation
For any Markov process targeting 𝜇𝛽, with generator 𝒜𝛽 and initial distribution 𝜌0, the continuity
equation for the evolution of the distribution 𝜌𝑡 is given by the Kolmogorov forward equation

𝒜∗
𝛽𝜌𝑡 = 𝜕𝑡𝜌𝑡

For the simulated annealing process, think of 𝒜𝑡 ≔ 𝒜𝛽(𝑡) as a time inhomogeneous generator for this
process. By stationarity of 𝒜, we have that

𝒜∗
𝑡𝜇𝑡 = 0 ≠ 𝜕𝑡𝜇𝑡

Following the Gibbs curve
Can we modify a Markov process to follow the mass flow prescribed by the Gibbs curve?

Specifically, can we find a deterministic velocity field 𝑣𝑡 such that

𝜕𝑡𝜇𝑡 +∇ ⋅ (𝑣𝑡𝜇𝑡) = 0?

Denote by (𝒫2(ℝ𝑑),𝑊2) the metric space of probability measures on ℝ𝑑 equipped with the Wasser-
stein-2 metric

View 𝑡 ↦ 𝜇𝑡 as a curve in this metric space. If this curve is sufficiently well-behaved the we can define
a tangent-like object 𝑣𝑡, where we think of “𝜇′𝑡 = 𝑣𝑡” as the flow of probability mass.

Theorem
Under suitable conditions on 𝑈 , the curve 𝑡 ↦ 𝜇𝑡 is an absolutely continuous curve in
the metric space (𝒫2(ℝ𝑑),𝑊2). Hence there exists a time dependent velocity field 𝑣𝑡
such that

𝜕𝑡𝜇𝑡 +∇ ⋅ (𝑣𝑡𝜇𝑡) = 0.

Moreover, the minimal 𝑣𝑡 is the derivative of the optimal transport maps from 𝜇𝑡 to
𝜇𝑡 + ℎ, in the sense that

𝑣𝑡(𝑥) = lim
ℎ→0+

ℎ−1(𝑇𝜇𝑡→𝜇𝑡+ℎ
(𝑥) − Id(𝑥)).

…with superimposed stochastic dynamics
Now, we combine

• The velocity field 𝑣𝑡 drives the distribution along the curve 𝜇𝑡
• The stochastic dynamics 𝒜 mixes any distribution towards 𝜇𝑡

Illustratively, we think of a process with generator

𝒜𝑜𝑓 = ⟨𝑣,∇𝑓⟩ + 𝒜𝑓.

A particle approximation scheme
Problem:   The velocity field 𝑣𝑡 is in general not available in closed form.

We sketch out a simple quasi-independent particle scheme inspired by the true dynamics. In short:  

• Simulate a population of particles according to independent stochastic dynamics 𝒜𝑡 and an approx-
imative velocity field 𝑉 .

• At finite intervals ℎ > 0, create empirical estimators �̂�𝑡 and �̂�𝑡+ℎ, the latter by reweighting.

• Estimate a transport map 𝑇𝑡 by solving the transport problem from �̂�𝑡 to �̂�𝑡+ℎ and update 𝑉
accordingly.

Simulation on a double well potential on ℝ with linear cooling:  

A double well potential
Without 𝑣-estimation

𝑊2-distance to the Gibbs curve With 𝑣-estimation, 5 particles
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