Energy-Guided Decoding for Object Hallucination Mitigation

Xixi Liu¹, Ailin Deng², Christopher Zach¹ ¹ Chalmers University of Technology ²National University of Singapore

CHALMERS **UNIVERSITY OF TECHNOLOGY**

Unlike existing hallucination mitigation methods such as VCD [1] (which necessitates generating a sophisticated noisy version of the original visual inputs), OPERA [2](which relies on the beam-searching decoding mechanism), HALC [4] (requiring a pre-defined layer bucket and an external detector), and MMVP [3](relies on additional fine-tuning), our method is derived through the lens of internal states of a language decoder. It avoids the need of visual distortion, or fine-tuning visual encoders, or external detectors making it free from contrastive decoding. More importantly, the energy score at each layer can be computed with a single forward pass, making our method significantly less computationally demanding compared to OPERA [2] and HALC [4].

Vision-Language Model Generation Selected Results The input tokens consisting of the visual tokens and language tokens is Our method consistently improves accuracy and F1 score on POPE benchmark denoted with x with the length of T. VLMs are commonly trained in with GQA dataset over three baseline methods with LLaVa-1.5. an autoregressive manner with a causal attention mask meaning that the prediction of the current token x_t only depends on the previous tokens, LLaVA-1.5 InstructBLIP Datasets *Setting* formally, Yes ratio $\Delta_{gap} \downarrow$ Decodin Recall F1 Score↑ Recall F1 Score↑ Accuracy↑ Precision Accuracy↑ Precision Greedy 96.00 87.09 60.23 10.23 90.07 53.17 <u>3.17</u> 85.77 VCD [1] 93.40 83.34 62.07 12.07 80.90 77.35 87.40 82.07 56.50 6.50 81.33 75.24 54.37 HALC [3 85.90 96.00 87.19 60.10 10.10 85.97 83.08 90.33 86.55 4.37 $\mathbf{h} = \mathsf{VLM}(\mathbf{x}) = \{h_0, h_1, \cdots, h_{T-1}\},\$ (1)OPERA [2] 92.93 54.37 4.3787.33 87.23 87.47 **87.35** 50.13 0.13 89.05

where \mathbf{h} is the output state of the final layer of language decoder, and

the size of h_t is f_{dim} . The next token predictive distribution is defined as

(2) $p(x_t | x_{< t}) = \mathsf{Softmax}[\mathcal{H}(h_t)],$

where $x_{<t}$ denotes the sequence of tokens before t-th position $\{x_i\}_{i=0}^{t-1}$ and $\mathcal{H} \in R^{f_{\text{dim}} \times V_{\text{size}}}$ is the learned vocabualry head.

Methods

We use this energy score to identify the layer whose hidden state provides the most reliable representation of the input. In detail, the energy score is given by

$$\mathbf{Energy}(h_t^k) = -\operatorname{LogSumExp}[\mathcal{H}(h_t^k)]$$
(3)

where $\mathcal{H}(h_t^k)$ denote the logits calculated at layer k for predicting token t. The layer $k^* = \arg\min_k \mathbf{Energy}(h_t^k)$ with the lowest score is consequently selected for decoding.

References

[1] Mitigating object hal- 603 lucinations in large vision-language models through visual 604 contrastive decoding. CVPR, 2024. [2] Opera: Alleviating hallucination in multi- 588 modal large language models via over-trust penalty and 589 retrospection-allocation. CVPR, 2024

[3] Eyes wide shut? exploring the661 visual shortcomings of multimodal llms. CVPR, 2024. [4] Halc: Object hallucination reduc-522 tion via adaptive focal-contrast decoding. ICML, 2024.

89.37

74.73

90.70

67.35

Energy (Ours)

87.73 **89.19**

79.16

96.00

1.63

21.27

48.37

71.27

86.53

76.37

92.35

70.70

79.67 85.54

90.07 79.21

43.13

63.70

6.87

13.70

