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We present invariant machine learning models that approximate the Ricci-flat metrics on Calabi–Yau manifolds with discrete symmetries.
By integrating the 𝜙 -model, in cymetric package, with G-invariant layers that project input data to a symmetry group's fundamental
domain, the models achieve more accurate metric approximations compared to standard 𝜙 -models. The method is also applicable to
computing Ricci-flat metrics on smooth CY quotients, as demonstrated on a ℤ5

2  quotient of a quintic CY manifold.

Calabi-Yau Manifold
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Abstract

Canonicalization1,3

Discrete Symmetries on CY

A Calabi-Yau (CY) manifold is a compact, complex, Kähler
3-fold with a non-vanishing holomorphic top form Ω. Yau's
theorem states that for a CY manifold with metric 𝑔, there
exists a unique Ricci-flat metric 𝑔𝑐𝑦  within the same
cohomology class. This metric satisfies the Monge–Ampère
(MA) equation:

𝐽𝑐𝑦  ∧ 𝐽𝑐𝑦  ∧ 𝐽𝑐𝑦 = κ Ω ∧ Ω

where κ is a real constant and 𝐽𝑐𝑦 is the associated Kähler 2-
form to 𝑔𝑐𝑦. The Ricci-flat Kähler form 𝐽𝑐𝑦  can be written as

𝐽𝑐𝑦 = 𝐽 + i𝜕𝜕 𝜙,

for some reference 2-form 𝐽. While there are no analytical
solutions for 𝐽𝑐𝑦  , numerical approximations can be made by
approximating the real function 𝜙 . The 𝜙 -model in the
Tensorflow package cymetric2 accomplishes this using a
neural network.

A complete intersection CY (CICY), 𝑋 is given as the
vanishing locus of a set of homogenous polynomials {𝑝𝑖}.
The group 𝐺 of discrete symmetries of 𝑝𝑖 translate into
discrete isometries on 𝑋 w.r.t 𝑔𝑐𝑦 which translate into
invariances for the function 𝜙.

To make the 𝜙 -model 𝐺-invariant, we augment it with a 𝑮-
canonicalization (invariant) layer.

A fundamental domain 𝐹 of 𝐺 acting on 𝑋 is a subset of 𝑋
containing a unique representative for each class 𝑋/𝐺.

A 𝑮-canonicalization ℎ:  𝑋 → 𝐹 is a map satisfying [ℎ(𝑥)]  =  [𝑥]
for classes in 𝑋/𝐺 i.e.

[ℎ(𝑔. 𝑥)]  =  [𝑔. 𝑥]  =  [𝑥]  =  [ℎ(𝑥)]  ⇒  ℎ(𝑔. 𝑥)  =  ℎ(𝑥) 

Our Contribution
We construct invariant models for different CICYs using canonicalizations,
and show that the invariant models obtain lower integrated error in solving the
MA equation.

Example: Consider the Fermat quintic CICY in ℂ𝑃4 given as the vanishing
locus of

𝑧0
5 + 𝑧1

5 + 𝑧2
5 + 𝑧3

5 + 𝑧4
5 = 0.

We have discrete symmetries given by permutations, 𝑆5, and scaling by fifth
roots of unity in each homogenous coordinates, 𝕫5

5. We also have continuous
symmetries given by scaling with ℂ∗ since we work with homogenous
coordinates.

We  build the following canonicalizations for each of these groups of
symmetries:

ℎℂ∗ 𝑧0, 𝑧1, 𝑧2, 𝑧3, 𝑧4 ≔
1

𝑧𝑚𝑎𝑥
𝑧0, 𝑧1, 𝑧2, 𝑧3, 𝑧4 , 𝑧𝑚𝑎𝑥 ≔ argmax

𝑧𝑖
|𝑧𝑖|

ℎ𝑆5 𝑧0, 𝑧1, 𝑧2, 𝑧3, 𝑧4  ≔  (𝑧𝑖0 , 𝑧𝑖1, 𝑧𝑖2, 𝑧𝑖3 , 𝑧𝑖4), |𝑧𝑖𝑗| ≥ |𝑧𝑖𝑗+1|

ℎℤ5
5 𝑧0, 𝑧1, 𝑧2, 𝑧3, 𝑧4  ≔ 

𝑧0 exp 𝑖  arg  𝑧0  𝑚𝑜𝑑 
2𝜋
5

 , … , 𝑧4 exp 𝑖  arg  𝑧4  𝑚𝑜𝑑 
2𝜋
5
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