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Summary

In real-time control systems such as autonomous vehicles, a quick reaction to sensor measurements is desired.
However, there is always a processing time, which can be unknown or non-constant. In systems with multiple
sensor channels, different time-varying delays result in timing misalignments. We present a model for such
systems and use Markov Jump Linear Systems theory to assess the impact on the stability and quantify the
performance in the presence of misalignments.

Model: system and delays

A plant P is regulated by a controller C. Both systems are
linear and time-invariant.

C P

D

u yγ

The plant output y is sampled periodically. The controller
calculates its control signal u using the measurement γ.
γ is a non-uniformly delayed version of y.γ1(k)

...
γn(k)

 =

y1(k − δ1(k))
...

yn(k − δn(k))


We use a probabilistic delay model to describe δ(k). The dy-
namical system D integrates the time-varying delays into the
closed-loop system.

Theory: Markov Jump Linear Systems

A Markov Jump Linear System is a linear system parameterised
by a discrete state. A Markov chain governs the discrete state
(here δ). At time step k, the continuous state x̃ evolves ac-
cording to

x̃(k + 1) = Φδ(k)x̃(k).

The state transition matrix Φδ(k) is made up of the matri-
ces that constitute P , C, and D. Only the latter depends on δ.

Notation: S contains all possible values of δ(k). The
Markov chain has a probability transition matrix Π.

• Stability: the system is mean-square stable if and only if

ρ (A) = max{|eig (A)|} < 1,

A = (ΠT ⊗ Inx̃
2) · blkdiag

{
ΦT

δ(k) ⊗ Φδ(k)

}
δ(k)∈S

.

• Performance: a cost J(k) is calculated based on the evo-
lution of the covariance of x̃.

Case study: Adaptive Cruise Control

P is a car with two sensor channels: position y1 and velocity
y2. The control objective is to keep a safe distance to a leading
vehicle.
In this example, both sensor channels have a constant delay:
δ1(k) = d1 and δ2(k) = d2.
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ρ (A): values < 1 indicate stability
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Stability: plot of the spectral radius ρ (A) for a range
of different d1 and d2.
The effect of delays in both sensor channels is asymmet-
ric. The spectral radius does not change monotonically
with the delays.
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(d1, d2) = (0, 0) (d1, d2) = (16, 4)
(d1, d2) = (3, 1) (d1, d2) = (7, 3)

Performance: evolution of J(k) for selected delay val-
ues. We show the normalised cumulative cost relative to
the reference cost J0 in the delayless case:

J̃(k) =

∑k
i=0 J(i)∑k
i=0 J0(i)

.

A larger delay doesn’t always imply a worse performance.


