How do timing misalignments affect real-time control systems?

Yde Sinnema Lund University, Department of Automatic Control Supervisors: Martina Maggio, Anders Rantzer

Summary

In **real-time control systems** such as autonomous vehicles, a quick reaction to sensor measurements is desired. However, there is always a processing time, which can be unknown or non-constant. In systems with multiple sensor channels, different time-varying delays result in **timing misalignments**. We present a model for such systems and use Markov Jump Linear Systems theory to assess the impact on the **stability** and quantify the **performance** in the presence of misalignments.

Model: system and delays

A plant \mathcal{P} is regulated by a controller \mathcal{C} . Both systems are linear and time-invariant.

The plant output y is sampled periodically. The controller calculates its control signal u using the measurement γ . γ is a *non-uniformly* delayed version of y.

$$\begin{bmatrix} \boldsymbol{\gamma}_1(k) \\ \vdots \\ \boldsymbol{\gamma}_n(k) \end{bmatrix} = \begin{bmatrix} \boldsymbol{y}_1(k - \boldsymbol{\delta}_1(k)) \\ \vdots \\ \boldsymbol{y}_n(k - \boldsymbol{\delta}_n(k)) \end{bmatrix}$$

Case study: Adaptive Cruise Control

 \mathcal{P} is a car with two sensor channels: position y_1 and velocity y_2 . The control objective is to keep a safe distance to a leading vehicle.

In this example, both sensor channels have a constant delay: $\delta_1(k) = d_1$ and $\delta_2(k) = d_2$.

We use a probabilistic delay model to describe $\delta(k)$. The dynamical system \mathcal{D} integrates the time-varying delays into the closed-loop system.

Theory: Markov Jump Linear Systems

A Markov Jump Linear System is a linear system parameterised by a discrete state. A Markov chain governs the discrete state (here δ). At time step k, the continuous state \tilde{x} evolves according to

 $\tilde{\boldsymbol{x}}(k+1) = \Phi_{\boldsymbol{\delta}(k)} \tilde{\boldsymbol{x}}(k).$

The state transition matrix $\Phi_{\delta(k)}$ is made up of the matrices that constitute \mathcal{P} , \mathcal{C} , and \mathcal{D} . Only the latter depends on δ .

Notation: S contains all possible values of $\delta(k)$. The Markov chain has a probability transition matrix Π .

Stability: plot of the spectral radius $\rho(\mathcal{A})$ for a range of different d_1 and d_2 . The effect of delays in both sensor channels is asymmetric. The spectral radius does not change monotonically with the delays.

$$(\mathbf{d}_1, \mathbf{d}_2) = (0, 0) - (\mathbf{d}_1, \mathbf{d}_2) = (16, 4)$$

- (\mathbf{d}_1, \mathbf{d}_2) = (3, 1) - (\mathbf{d}_1, \mathbf{d}_2) = (7, 3)

• Stability: the system is *mean-square stable* if and only if

 $\rho\left(\mathcal{A}\right) = \max\{\left|\operatorname{eig}\left(\mathcal{A}\right)\right|\} < 1,$ $\mathcal{A} = \left(\Pi^T \otimes I_{n_{\tilde{x}}^2}\right) \cdot \operatorname{blkdiag}\left\{\Phi_{\delta(k)}^T \otimes \Phi_{\delta(k)}\right\}_{\delta(k) \in \mathcal{S}}.$

• Performance: a cost J(k) is calculated based on the evolution of the covariance of \tilde{x} .

Performance: evolution of J(k) for selected delay values. We show the normalised cumulative cost relative to the reference cost J_0 in the delayless case:

A larger delay doesn't always imply a worse performance.

