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1' Hard Cases DEtECtiOn in * 4 real examples of GPT4 outputs
Motion Prediction by Vision-
Language Foundation Models

Y1 Yang, Qingwen Zhang, Kei lkemura, Nazre Batool, John Folkesson

“‘nighttime driving and wet road

surfaces, which can affect

visibility and vehicle behavior.

The reflections and glare from
E] the lights...”

“at an intersection... There is a
large truck on the left that may
obstruct the view and movement...

7 increase the difficulty of
prediction due to potential blind
spots ...

» Addressing hard cases is challenging!
o Sparsity & high variability

“"The intersection ahead adds
complexity to the driving
scenario, but overall traffic
density is not high...”

Anomalous road users Extreme weather Complex traffic

 Existing method:
o collect more real-world data? -> expensive!
o synthetic data?
» generate with deep generative models conditioned on
specific needs
* manipulate the 3D reconstructed environment, like -
moving/adding road users
-> require much human intervention!
o Incremental learning? -> dependence on the network training!

@ | | | 2. AutoScale: Combining
Is there a more explainable and independent method available? . . . . .
Multi-Task Optimization with

“The traffic situation appears to be
straightforward with light traffic
and clear road markings...”
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