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Motivation

* Wireless networks are inherently rich in representation, encompassing topology, graph structures, and inter-relations.

 Learning from these representations facilitates the development of heuristic-informed neural surrogates, which generalize effectively across
diverse scenarios.

* Integrating the radio environment into the surrogate model makes it environment-aware, enhancing adaptability to real-world conditions.
Conversely, such models open new frontiers in joint communication and sensing (JCAS).

 These representations introduce a new data modality for over-the-air (OTA) learning and computing, paving the way toward zero-cost sensing &
localization capabilities.
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