# A Study of Regret Minimization for Static Scalar Nonlinear Systems



#### Ying Wang, KTH Royal Institute of Technology **Division of Decision and Control Systems** Advisor: Håkan Hjalmarsson, Collaborators: Mirko Pasquini, Kévin Colin

# **Motivation & Research Goals**

- > We study exploration in a static scalar nonlinear optimization problem with an unknown parameter learned from noisy data.
- $\succ$  The goal is to balance exploration and exploitation via regret minimization over a finite horizon.
- $\succ$  The theoretical results suggest that the optimal strategy is either:
  - $\succ$  Lazy exploration: no exploration;
  - $\succ$  Immediate exploration: exploration only at the first time instant.

> A quadratic numerical example illustrates these findings.

## Problem

**Setting**: Static unconstrained scalar optimization problems

 $u_0^* = \arg\min_{u \in \mathbb{R}} \Phi(u, \theta_0)$ s.t.  $y_t = h(u_t, \theta_0) + e_t, e_t \sim N(0, 1)$ 

**Challenge**: The true parameter vector  $\theta_0$  is unknown **Certainty Equivalence Principle (CEP)**: Approximate  $u_0^*$  by replacing  $\theta_0$  with its estimate  $\hat{\theta}_t$  learnt from the input  $\{u_1, \dots, u_{t-1}\}$ and noisy measurement output  $\{y_1, \dots, y_{t-1}\}$ 

$$u_t^* = \min_{u_t} \Phi(u, \hat{\theta}_t)$$

**Problem**: Due to the noise,  $u_t^*$  may not be informative enough to get an accurate estimate of  $\theta_0$ 

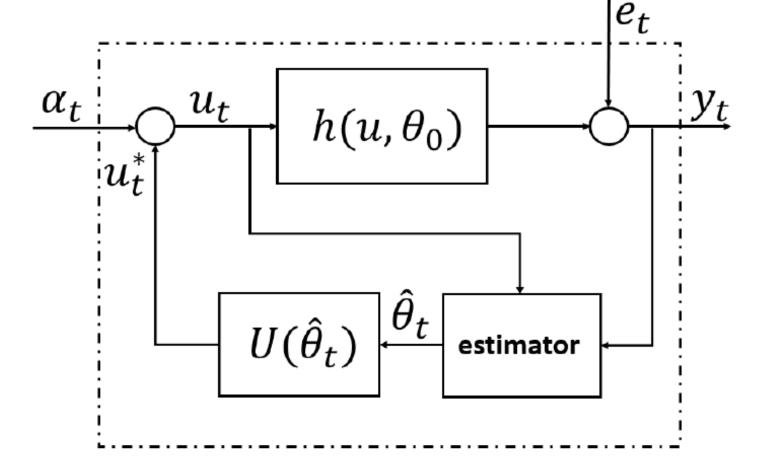
A dither-CEP framework



**Problem**: How to design an effective exploration strategy? Method: Expected regret minimization  $\min_{\substack{\alpha_t \\ t=1,\dots,T}} R_T = \min_{\substack{\alpha_t \\ t=1,\dots,T}} \sum_{t=1}^{T} \mathbb{E}\left[ \underbrace{\Phi(u_t^* + \alpha_t, \theta_0) - \Phi(u_0^*, \theta_0)}_{\text{Instantaneous regret}} \right]$ with  $\alpha_t \sim N(0, x_t)$ , where  $x_t, t = 1, ..., T$  are to be designed. **Assumption**: The estimator  $\hat{\theta}_t$  for all t is unbiased and efficient. **Approximate regret dynamics** ( $\lambda$  is a weight):  $\tilde{R}_{t} = \tilde{R}_{t-1} + \mathbb{I}_{t}^{-1} + \lambda x_{t}, \quad t = 1, ..., T$ **Fisher Information dynamics**:  $\mathbb{I}_{t} = \mathbb{I}_{t-1} + \mathbb{E}\left[\frac{\partial h(u_{t},\theta)}{\partial \theta}\Big|_{u_{t}=u_{t}^{*}+\alpha_{t}}^{2}\right] = \mathbb{I}_{t-1} + f(x_{t},\mathbb{I}_{t-1}^{-1}), \quad t = 1, \dots, T$ 

Nonlinear optimal control problem  $\Rightarrow$  optimal exploration

**Assumption**: The function *f* is non-negative, convex, and nondecreasing w.r.t. its arguments. **Definition**:  $x^* \in \mathbb{R}^T$  is a lazy excitation if  $x_k^* = 0$ , for all k;  $x^*$  is an immediate excitation if  $x_1^* > 0$  and  $x_k^* = 0$ , for  $k \ge 2$ . **Theorem**: The optimal solution is a lazy or immediate excitation.



Input = Exploitation input + Exploration input

- Exploitation input  $u_t^* = \min \Phi(u_t, \hat{\theta}_t)$ : To take the best decision given the available information;
- Exploration input  $\alpha_t$ : To get new information for an accurate parameter estimate.

**However,**  $\alpha_t$  will reduce performance and thus there is a tradeoff between exploitation and exploration when we design  $\alpha_t$ .

### References

## Example

The objective function and static input-output relationship are

 $\Phi(u, \theta_0) = u^2 + 2(\theta_0 + 1)u$  $y_t = \theta_0 u_t^2 + e_t, e_t \sim N(0,1)$ 

where  $\theta_0 = -0.4$ . The CEP exploration input is  $u_t^* = -(\hat{\theta}_t + 1)$ . The oracle exploitation input, minimizing the cost, is  $u_0^* = -0.6$ . The exploration input  $\alpha_t \sim N(0, x_t)$ , where  $x_t$ , t = 1, ..., T are to be designed by minimizing expected regret

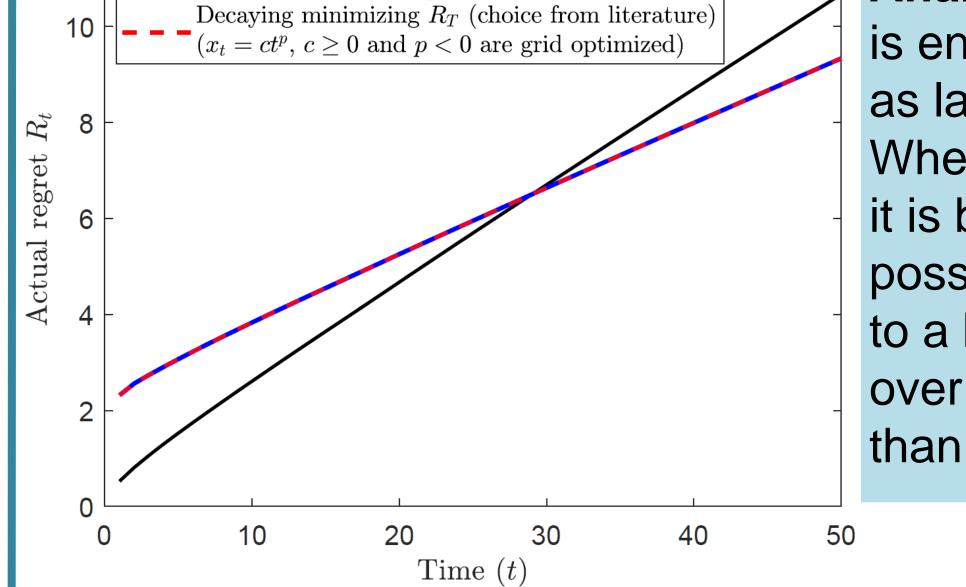
$$\min_{\substack{x_t \ t=1,...,T}} \tilde{R}_T = \min_{\substack{x_t \ t=1,...,T}} \sum_{t=1}^T (\mathbb{I}_t^{-1} + x_t)$$

 $\mathbb{I}_{t} = \mathbb{I}_{t-1} + 3x_{t}^{2} + [6\mathbb{I}_{t-1}^{-1} + 6(u_{0}^{*})^{2}]x_{t} + 3\mathbb{I}_{t-1}^{-2} + 6(u_{0}^{*})^{2}\mathbb{I}_{t-1}^{-1} + (u_{0}^{*})^{4}$ 

- Immediate minimizing  $R_T$ 

#### Analysis: When free information

- 1. Colin, K., Hjalmarsson, H., & Bombois, X. (2022). Optimal exploration strategies for finite horizon regret minimization in some adaptive control problems. arXiv preprint arXiv:2211.07949.
- 2. Colin, K., Ferizbegovic, M., & Hjalmarsson, H. (2022). Regret Minimization for Linear Quadratic Adaptive Controllers Using Fisher Feedback Exploration. IEEE Control Systems Letters, 6, 2870-2875.
- 3. Wang, Y., Pasquini M., Colin, K., & Hjalmarsson, H. (2024). Regret Minimization in Scalar, Static, Non-linear Optimization Problems. Preprint at https://arxiv.org/abs/2403.15344.



is enough, we can do nothing, as lazy excitation indicates. When exploration is necessary, it is best to explore it as early as possible since the reward, due to a better model, accumulates over the entire horizon T, rather than a part of it.

