
StaticBugDetectionforMLPrograms
Yiran Wang, Ph.D. Student

Department of Computer Science, Linköping University
yiran.wang@liu.se

WASP, Software Center Project 61

Background
Machine learning (ML) techniques have become widely popular and proven highly effective across various domains. However, developing ML programs can be
challenging, often leading to bugs. To enhance the quality of ML programs, static analysis serves as a powerful tool for detecting bugs without the need to
execute the code. Despite its potential, existing static analyzers struggle to manage statically unknown information related to data and ML libraries.
Jupyter notebooks, a widely used platform for ML prototyping and data analysis, provide a unique opportunity by offering valuable runtime information through
their kernel after executing specific cells. To address the limitations of static analyzers, we propose a novel approach — semi-static analysis — which leverages
runtime information from ML programs to improve the effectiveness of static analysis.

Bugs in ML notebooks
We conduct a comprehensive empirical study [1] to gain deeper insights into
bugs in ML programs written in Jupyter Notebooks, focusing on crashes.

Data mining and analysis:

• Data collection: 64,031 ML notebooks from GitHub and Kaggle, con-
taining 92,542 crashes/error cell outputs.

• Manual analysis: a representative sample of 746 crashes.

Analysis results:

• Exception types: NameError, ValueError, and TypeError together
account for 53% of all crashes.

• Root causes: Top causes include API misuse (19%), notebook-specific
issues (19%, most common on Kaggle), and data confusion (18%).

API NB DATA ENV IMPL UNK INTENT RSC LIB
0%
2%
5%
8%

10%
12%
15%
18%
20%

70
77

65 67
59

24
19

8
0

73

65 66

55 54

15
9 11

5

NB-specific
Out-of-order execution
Previous cell error

GitHub
Kaggle

• ML vs. general Python bugs: ML-specific bugs dominate, comprising
64% of the total crashes (59% on GitHub and 71% on Kaggle). Compar-
ison of ML and Python bug root causes is shown below:

API NB DATA ENV IMPL INTENT LIB RSC UNK

ML bug

Python bug

23 21 23 12 10 3 0 4 4

13 17 9 24 24 5 1 0 7
0%

20%

• ML pipeline stages: Crashes are most frequent during the data prepa-
ration stage (27%), followed by model training (16%) and evalua-
tion/prediction (15%).

ENVS DATAP DATAV MCONS MTRAIN EVAL NONE
0%

5%

10%

15%

20%

25%

31
19

111
92

40
43

20

32

50

68

41

73

96

26

ML bug (GitHub)
Python bug (GitHub)
ML bug (Kaggle)
Python bug (Kaggle)

Static bug detection
We investigate our semi-static approach by examining how runtime informa-
tion can enhance static analysis for bug detection in ML notebooks [2].

x = np.loadtxt("data.csv")
x = tf.constant(x)

x.set_shape([3,None])
...

[1]:

[]:

1. Load dataset

2. Data processing

3. Build ML model
...

Run-time info after executing cell 1

x: <tf.Tensor: shape=(2, 3),
dtype=int32, numpy= array([[43,
52, 73], [41, 18, 94]])>

Bug in cell 2

Error: Dimension 0 in both shapes
must be equal, but are 2 and 3.

Experiment:

• Targeted ML bug: Tensor shape mismatch (TensorFlow).
• Selected tools: Classic static analyzer pythia [4] and gpt-4 [3].
• Dataset: The Unaligned Tensor (UT) dataset [5], containing 14 buggy

scripts and 14 fixed scripts (adjusted to 15 buggy and 13 fixed upon un-
covering a hidden bug in one "fixed" script with runtime information).

Result:

Analyzers pythia gpt-4 (Union) gpt-4 (Majority)
RunInfo ✗ ✓ ✗ ✓ ✗ ✓

Precision 84.62% 81.25% 75.00% 80.00% 66.67% 72.72%
Recall 73.33% 86.67% 60.00% 80.00% 40.00% 53.33%
F1 score 78.57% 83.87% 66.67% 80.00% 50.00% 61.54%
FN 4 2 6 3 9 7
FP 2 3 3 3 3 3

Ongoing work
• Benchmark: Build a dataset of ML notebook crashes, categorized by bug

type, root cause, and ML library, along with a reproducible setup.
• Tooling: Develop a bug detector for notebook environments that identifies

coding errors before execution by integrating static analysis with LLMs.

Publication
[1] Yiran Wang, José Antonio Hernández López, Ulf Nilsson,
Dániel Varró. Using Run-Time Information to Enhance Static
Analysis of Machine Learning Code in Notebooks. FSE 2024,
Brazil, doi: 10.1145/3663529.3663785

[2] Yiran Wang, Willem Meijer, José Antonio Hernández López,
Ulf Nilsson, and Dániel Varró. Why do Machine Learning Note-
books Crash? 2024, arXiv:2411.16795

References

[3] John Schulman et al., ChatGPT: Optimizing Language Models for Dialogue. 2022.
[4] S. Lagouvardos et al., Static analysis of shape in TensorFlow programs. ECOOP 2020.
[5] Yuhao Zhang et al., An empirical study on tensorflow program bugs. ISSTA 2018.

