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Abstract

In this project we study the convex polygonal formation control problem of multi-vehicle systems. The vehicles are described by a nonlinear unicycle model.
The formation is achieved in an intrinsic way in the sense that final achieved polygon is only attributed to the initial conditions of the vehicle. Different
initial conditions will result in polygons with different side lengths and interior angles. The control design consists of three phases. First, the vehicles are
steered to form a circular formation, which is equivalent to the vehicles forming an inscribed polygon. Secondly, a consensus algorithm is applied to ensure
all vehicles share the same heading. Finally, all vehicles maintain a polygonal formation while performing some prescribed motion, e.g., sinusoidal motion.

Problem Formulation

We aim to steer n ≥ 3 mobile vehicles moving in a plane to form convex
polygonal formation in a distributed manner. The achieved formation is
not designated a priori in the controller. Instead, we aim to achieve for-
mation in an intrinsic way, which means that the final formation patterns
are only attributed to the inter-vehicle interaction network and the initial
conditions of the vehicles. The dynamics of each vehicle can be described
by a unicycle model:

ẋi = vi cos θi,

ẏi = vi sin θi,

θ̇i = ωi,

where zi = [xi yi]
� ∈ R

2 denotes the position of the vehicle i ∈ V =
{1, 2, . . . , n}, θi ∈ R is its heading, vi ∈ R≥0 and ωi ∈ R are its con-
trolled translational and rotational velocities, respectively. We consider
the scenario where the interaction network among the vehicles is a ring
graph, i.e., vehicle i follows vehicle i+1 modulo n, one reason being that
it requires the fewest communication links.
For analysis convenience, we consider relative coordinates. Let di denotes
the distance between vehicle i and i+1, let αi denotes the angle difference
from the heading of vehicle i to the heading that would take it directly
towards vehicle i+1, and let γi be the heading difference minus π. Then,
the equations of motion in relative coordinates for vehicle i is described
as

ḋi = −vi cosαi − vi+1 cos (αi + γi),

α̇i =
1

di
(vi sinαi + vi+1 sin (αi + γi))− ωi,

γ̇i = ωi − ωi+1.

The above formula is valid when di �= 0. We assume that di is always
positive. We suppose the following assumptions to achieve the control
goal.

Assumption 1. Each vehicle i ∈ V is equipped with sufficient sensors to
measure di, αi, and θi

a.

Assumption 2. Each vehicle i ∈ V have access to γi := θi − θi+1 − π
by exchanging information with vehicle i+ 1.
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Figure 1: Illustration of relative coordinates.

aIn practice, these measurements require the use of various sensors combined, in-
clude camera, IR, magnetometer, and many others. The key is that the vehicles have
no access to absolute measurements/only have access to relative measurements.

Formation Transform

We focus on a special kind of polygon, inscribed polygon, a polygon that
has all its vertices lying on the circumference of a circle. Therefore, the
polygonal formation problem is transformed into a circular formation prob-
lem. Once a circular formation is achieved, it is able to apply switching
control to ensure all vehicles to perform some certain motion while main-
taining the polygonal formation. For each vehicle i, suppose its controls
vi and ωi are designed using di, αi, and γi. Let ξi = [di αi γi]

� and
ξ = [ξ�1 ξ�2 . . . ξ�n ]�. Then we can view the complete multi-vehicle
system as

ξ̇ = f(ξ).

Due to its high nonlinearity, classical linearization method fails to analyze
the stability around the equilibrium points (i.e., circular formations), and
more advanced stability analysis tools are useda.

aThe control design in detail and tedious mathematical analysis is omitted due to
the space constraints.

Simulation

We simulate the scenarios when n = 4. For ease of tuning, we suppose
all vehicles have identical and translational velocity, i.e., vi ≡ v ∀ i ∈ V.
Once the vehicles converge to a circular formation, we switch the con-
trol so that the vehicles perform a sinusoidal motion while maintaining a
convex polygonal formation. It is shown that with different initial condi-
tions of the vehicles, the vehicles converge to different convex polygonal
formations.
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Figure 2: Vehicle trajectories visualization with different initial conditions

The switching control that we implement is quite simple. After the ve-
hicles converge to and keep a stationary polygonal formation, we make
all vehicles remain still (v = 0) while a consensus algorithm is applied for
them to achieve agreement on their headings:

θ̇i = −(θi − θi+1).

Then, after the vehicles reach an agreement on their headings, we re-
choose a nonzero translational velocity v > 0 and for each vehicle i ∈ V
we set its rotational velocity as ωi = sin t.


