
Department of Science and Technology Institutionen för teknik och naturvetenskap
Linköping University Linköpings universitet

gnipökrroN 47 106 nedewS ,gnipökrroN 47 106-ES

LiU-ITN-TEK-A-16/057--SE

Design och Implementering av
ett Out-of-Core

Globrenderingssystem Baserat
på Olika Karttjänster

Kalle Bladin

Erik Broberg

2016-12-02

LiU-ITN-TEK-A-16/057--SE

Design och Implementering av
ett Out-of-Core

Globrenderingssystem Baserat
på Olika Karttjänster

Examensarbete utfört i Medieteknik
vid Tekniska högskolan vid

Linköpings universitet

Kalle Bladin
Erik Broberg

Handledare Alexander Bock
Examinator Anders Ynnerman

Norrköping 2016-12-02

Upphovsrätt

Detta dokument hålls tillgängligt på Internet – eller dess framtida ersättare –
under en längre tid från publiceringsdatum under förutsättning att inga extra-
ordinära omständigheter uppstår.

Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner,
skriva ut enstaka kopior för enskilt bruk och att använda det oförändrat för
ickekommersiell forskning och för undervisning. Överföring av upphovsrätten
vid en senare tidpunkt kan inte upphäva detta tillstånd. All annan användning av
dokumentet kräver upphovsmannens medgivande. För att garantera äktheten,
säkerheten och tillgängligheten finns det lösningar av teknisk och administrativ
art.

Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i
den omfattning som god sed kräver vid användning av dokumentet på ovan
beskrivna sätt samt skydd mot att dokumentet ändras eller presenteras i sådan
form eller i sådant sammanhang som är kränkande för upphovsmannens litterära
eller konstnärliga anseende eller egenart.

För ytterligare information om Linköping University Electronic Press se
förlagets hemsida http://www.ep.liu.se/

Copyright

The publishers will keep this document online on the Internet - or its possible
replacement - for a considerable time from the date of publication barring
exceptional circumstances.

The online availability of the document implies a permanent permission for
anyone to read, to download, to print out single copies for your own use and to
use it unchanged for any non-commercial research and educational purpose.
Subsequent transfers of copyright cannot revoke this permission. All other uses
of the document are conditional on the consent of the copyright owner. The
publisher has taken technical and administrative measures to assure authenticity,
security and accessibility.

According to intellectual property law the author has the right to be
mentioned when his/her work is accessed as described above and to be protected
against infringement.

For additional information about the Linköping University Electronic Press
and its procedures for publication and for assurance of document integrity,
please refer to its WWW home page: http://www.ep.liu.se/

© Kalle Bladin, Erik Broberg

Master’s thesis

Design and Implementation of an

Out-of-Core Globe Rendering System Using

Multiple Map Services

Submitted in partial fulfillment of

the requirements for the award of the degree of

Master of Science

in

Media Technology and Engineering

Submitted by

Kalle Bladin & Erik Broberg

Examiner
Anders Ynnerman

Supervisor
Alexander Bock

Department of Science and Technology
Linköping University 2016

Abstract

This thesis focuses on the design and implementation of a software system
enabling out-of-core rendering of multiple map datasets mapped on virtual
globes around our solar system. Challenges such as precision, accuracy, cur-
vature and massive datasets were considered. The result is a globe visual-
ization software using a chunked level of detail approach for rendering. The
software can render texture layers of various sorts to aid in scientific visual-
ization on top of height mapped geometry, yielding accurate visualizations
rendered at interactive frame rates.

The project was conducted at the American Museum of Natural History
(AMNH), New York and serves the goal of implementing a planetary visual-
ization software to aid in public presentations and bringing space science to
the public.

The work is part of the development of the software OpenSpace, which is
the result of a collaboration between Linköping University, AMNH and the
National Aeronautics and Space Administration (NASA) among others.

Acknowledgments

We would like to give our sincerest thanks to all the people who have been
involved in making this thesis work possible. Thanks to Anders Ynnerman for
giving us this opportunity. Thanks to Carter Emmart for being an inspiring
and driving force for the project and for sharing his passion in bringing
knowledge and interest in astronomy to the general public. Thanks to Vivian
Trakinski for making us feel needed and useful within the Openspace project
and within the museum.

Thanks to Alexander Bock for his dedication in the project and the sup-
port he has given as a mentor along with Emil Axelsson during the whole
project. Thanks to all the people in the OpenSpace team, including our
peers Michael and Sebastian, which have been both inspiring, helpful and
enjoyable to work and share the experience with.

We would like to thank all the people we have met during our time at
AMNH. Kayla, Eozin, Natalia have not only been our trusted lunch mates
but also great friends outside of work. Thanks to Jay for all the hardware
support, and also all the rest of the people at the Science Bulletins and Rose
Center Engineering for being so welcoming and helpful.

We would also like to thank Lucian Plesea for his expert support in map-
ping services together with Vikram Singh for setting up the map servers
we could use in our software. Also, thanks to Jason, Ally and David for
providing us with high resolution Mars imagery data that we could use for
rendering.

A big thank you to Masha and the rest of the CCMC team as well as
Ryan, who made our visit to NASA Goddard Space Flight Center the best
experience possible by inspiring us and giving us insight in parts of NASA’s
space science.

All our friends and family who travelled from Sweden to visit us in New
York, we’re happy for sharing a great time with you during our leisure.

Last but not least we are very happy to have made new great friends
outside of the thesis work during our stay in the United States. You have
made this experience even more enjoyable.

1

Contents

Acknowledgements 1

1 Introduction 1

1.1 Background . 1
1.1.1 OpenSpace . 1
1.1.2 Globe Browsing . 2

1.2 Objectives . 3
1.3 Delimitations . 4
1.4 Challenges . 5

2 Theoretical Background 6

2.1 Large Scale Map Datasets . 6
2.1.1 Web Map Services . 7
2.1.2 Georeferenced Image Formats 8
2.1.3 Available Imagery Products 8

2.2 Modeling Globes . 10
2.2.1 Globes as Ellipsoids . 10
2.2.2 Tessellating the Ellipsoid 11
2.2.3 2D Parameterisation for Map Projections 14

2.3 Dynamic Level of Detail . 20
2.3.1 Discrete Level of Detail 21
2.3.2 Continuous Level of Detail 21
2.3.3 Hierarchical Level of Detail 22

2.4 Level of Detail Algorithms for Globes 24
2.4.1 Chunked LOD . 24
2.4.2 Geometry Clipmaps . 27

2.5 Precision Issues . 31
2.5.1 Floating Point Numbers 31
2.5.2 Single Precision Floating Point Numbers 31
2.5.3 Double Precision Floating Point Numbers 32
2.5.4 Rendering Artifacts . 32

i

2.6 Caching . 34
2.6.1 Multi Stage Texture Caching 34
2.6.2 Cache Replacement Policies 34

3 Implementation 36

3.1 Reference Ellipsoid . 37
3.2 Chunked LOD . 37

3.2.1 Chunks . 37
3.2.2 Chunk Selection . 38
3.2.3 Chunk Tree Growth Limitation 39
3.2.4 Chunk Culling . 40

3.3 Reading and Tiling Image Data 41
3.3.1 GDAL . 42
3.3.2 Tile Dataset . 44
3.3.3 Async Tile Dataset . 46

3.4 Providing Tiles . 48
3.4.1 Caching Tile Provider 49
3.4.2 Temporal Tile Provider 50
3.4.3 Single Image Tile Provider 51
3.4.4 Text Tile Provider . 52

3.5 Mapping Tiles onto Chunks 53
3.5.1 Chunk Tiles . 53
3.5.2 Chunk Tile Pile . 54

3.6 Managing Multiple Data Sources 55
3.6.1 Layers . 56
3.6.2 Layers on the GPU . 56

3.7 Chunk Rendering . 60
3.7.1 Grid . 60
3.7.2 Vertex Pipeline . 61
3.7.3 Fragment Pipeline . 63
3.7.4 Dynamic Shader Programs 64
3.7.5 LOD Switching . 65

3.8 Interaction . 67

4 Results 68

4.1 Screenshots . 68
4.1.1 Height Mapping . 69
4.1.2 Water Masking . 70
4.1.3 Night Layers . 71
4.1.4 Color Overlays . 72
4.1.5 Grayscale Overlaying 73

ii

4.1.6 Local Patches . 74
4.1.7 Visualizing Scientific Parameters 75
4.1.8 Visual Debugging: Bounding Volumes 76
4.1.9 Visual Debugging: Camera Frustum 77

4.2 Benchmarking . 78
4.2.1 Top Down Views . 79
4.2.2 Culling for Distance Based Chunk Selection 81
4.2.3 Culling for Area Based Chunk Selection 83
4.2.4 LOD: Distance Based vs. Area Based 85
4.2.5 Switching Using Level Blending 86
4.2.6 Polar Pinching . 88
4.2.7 Benchmark: Interactive Globe Browsing 89
4.2.8 Camera Space Rendering 90

5 Discussion 91

5.1 Chunked LOD . 91
5.1.1 Chunk Culling . 91
5.1.2 Chunk Selection . 92
5.1.3 Chunk Switching . 92
5.1.4 Inconsistent Globe Browsing Performance 93

5.2 Ellipsoids vs Spheres . 94
5.3 Tessellation and Projection . 94
5.4 Chunked LOD vs Ellipsoidal Clipmaps 95
5.5 Parallel Tile Requests . 95
5.6 High Resolution Local Patches 96

6 Conclusions 97

7 Future Work 98

7.1 Parallelizing GDAL Requests 98
7.2 Browsing WMS Datasets Upon Request 98
7.3 Integrating Atmosphere Rendering 98
7.4 Local Patches and Rover Terrains 99
7.5 Other Features . 99
7.6 Other Uses of Chunked LOD Spheres in Astro-Visualization . 100

References 101

Appendices 106

A General Use of Globe Browsing in OpenSpace 107

iii

B Build Local DEM Patches to Load With OpenSpace 108

iv

List of Figures

2.1 The size of the map is decreasing exponentially with the overview.
Figure adapted from [13] . 6

2.2 The WGS84 coordinate system and globe. Figure adapted
from [13] . 11

2.3 Geographic grid tessellation of a sphere with constant number
of latitudinal segments of 4, 8 and 16 respectively 12

2.4 Quadrilateralized spherical cube tessellation with 0, 1, 2 and
3 subdivisions respectively . 12

2.5 Hierarchical triangular mesh tessellation of a sphere with 0, 1,
2 and 3 subdivisions respectively 13

2.6 HEALPix tessellation of three different levels of detail 13
2.7 Geographic tessellation of a sphere with polar caps 14
2.8 Geographic map projection. Figure adapted from [13] 15
2.9 Difference between geocentric latitudes, φc and geodetic lat-

itudes, φd for a point ~p on the surface of an ellipsoid. The
figure also shows the difference between geocentric and geode-
tic surface normals, n̂c and n̂d, respectively. 16

2.10 Unwrapped equirectangular and mercator projections. The
mercator projection works when it is unwrapped due to it
being conformal (preserving aspect ratio). 17

2.11 Mercator projection. Figure adapted from [13] 17
2.12 Cube map projection. Figure adapted from [13] 18
2.13 TOAST map projection. Figure adapted from [13] 19
2.14 HEALPix map projection. Figure adapted from [13] 19
2.15 Polar map projections. Figure adapted from [13] 20
2.16 A range of predefined meshes with increasing resolution. Dy-

namic level of detail algorithms are used to choose the most
suitable mesh for rendering . 21

2.17 Mesh operations in continous LOD 22
2.18 Bunny model chunked up using HLOD. Child nodes represent

higher resolution representations of parts of the parent models 23

v

2.19 Chunked LOD for a globe . 24
2.20 Culling for chunked LOD. Red chunks can be culled due to

them being invisible to the camera 26
2.21 Vertex positions when switching between levels 26
2.22 Chunks with skirts hide the undesired cracks between them . . 27
2.23 Clip maps are smaller than mip maps as only parts of the

complete map need to be stored. Figure adapted from [13] . . 28
2.24 The Geometry Clipmaps follow the view point. Higher levels

have coarser grids but covers smaller areas. The interior part
of the grid can collapse so that higher level geometries can
snap to their grid . 28

2.25 Geometry Clipmaps on a geographic grid cause pinching around
the poles, which needs to be handled explicitly 29

2.26 Jupiter’s moon Europa rendered with single precision floating
point operations. The precision errors in the placement of the
vertices is apparent as jagged edges even at a distance far from
the globe. 33

2.27 Z-fighting as fragments flip between being behind or in front
of each other . 33

2.28 Inserting an entry in a LRU cache. 35

3.1 Overviewing class diagram of RenderableGlobe and its related
classes. 36

3.2 Triangle with the area 1/8 of the chunk projected onto a unit
sphere. The area is used to approximate the solid angle of the
chunk used as an error metric when selecting chunks to render 39

3.3 Frustum culling algorithm. This chunk cannot be frustum
culled. 40

3.4 Horizon culling is performed by comparing the length lh + lm
with the actual distance between the camera position and the
object at position ~p. 41

3.5 The required GDAL RasterIO parameters. 43
3.6 Result of GDAL raster IO. 43
3.7 The tile dataset pipeline takes a tile index as input, interfaces

with GDAL and returns a raw tile 44
3.8 Overview of the calculation of an IO description. 45
3.9 Asynchronous reading of Raw tiles can be performed on sep-

arate threads. When the tile reading job is finished the raw
tile will be appended to a concurrent queue. 47

3.10 Retrieving finished RawTiles. 47
3.11 Tile provider interface for accessing tiles 48

vi

3.12 Tiles are either provided from cache or enqueued in an asyn-
chronous tile dataset if it is not available 49

3.13 The tile cache is updated once per frame 50
3.14 Tiles are fetched on demand. The first time a tile is re-

quested, the asynchronous tile dataset will request it on a
worker thread. As soon as the tile has been initialized it will
have the status “OK” and can be used for rendering 50

3.15 Each temporal snapshot is internally represented by a caching
tile provider . 51

3.16 Serving single tiles is useful for debugging chunk and texture
alignment . 52

3.17 Serving tiles with custom text rendered on them can be used
as size references or providing other information. The tile
provider is internally holding a LRU cache for initialized tiles . 52

3.18 Only the highlighted subset of the parent tile is used for ren-
dering the chunk. Figure adapted from [13] 53

3.19 The image data of a given chunk tile pile. Only the highlighted
subset of the parent tiles are used for rendering the chunk.
Figure from [28] . 55

3.20 UML diagram of the LayerManager and its related classes . . 57
3.21 UML structure for corresponding GPU-mapped hierarchy. The

class GPUData<T> maintains an OpenGL uniform location . . . 58
3.22 Grid with skirts with a side of N = 4 segments. Green repre-

sents the main area with texture coordinates ∈ [0, 1] and blue
is the skirt of the grid. 60

3.23 Model space rendering of chunks is performed with a mapping
of vertices from geodetic coordinates to Cartesian coordinates. 61

3.24 Vertex pipeline for model space rendering. Variables on the
CPU are defined in double precision and cast to single preci-
sion before being uploaded to the GPU. 61

3.25 Interpolating vertex positions in camera space leads to high
precision in the representation of vertex positions close to the
camera compared to positions defined in model space. 62

3.26 Vertex pipeline for camera space rendering. Variables on the
CPU are defined in double precision and cast to single preci-
sion before being uploaded to the GPU 62

3.27 Blending on a per fragment basis. The level interpolation
parameter t is used to calculate level weights w1 = 1 − t and
w2 = t, in this case using two chunk tiles per chunk tile pile. . 66

vii

4.1 Shaded Earth rendered with NASA GIBS VIIRS daily image
[17] . 68

4.2 Earth rendered with ESRI World Elevation 3D height map
[44]. Color layer: ESRI Imagery World 2D [28] 69

4.3 Shaded Earth using water mask texture. Color layer: ESRI
Imagery World 2D [28] . 70

4.4 Night layers are only rendered on the night side of the planet.
Night layer: NASA GIBS VIIRS Earth at night [17] 71

4.5 Earth rendered with different color overlays used for reference.
Color layer: ESRI Imagery World 2D [28] 72

4.6 Valles Marineris, Mars with different layers 73
4.7 Local DTM patches of West Candor Chasma, Valles Marineris,

Mars. All figures use color layer: Viking MDIM [19] and height
layer: MOLA [45]. 74

4.8 Visualization of scientific parameters on the globe. All these
datasets are temporal and can be animated over time. Datasets
from [17]. 75

4.9 Rendering the bounding polyhedra for chunks at Mars. Note
how the polyhedra start out as tetrahedra for the largest chunks
in 4.9a and converge to rectangular blocks as seen in 4.9d. . . 76

4.10 Chunks culled outside the view frustum. The skirt length of
the chunks differ depending on the level. The figure also shows
how some chunks are rendered in model space (green edges)
and some in camera space (red edges). 77

4.11 Top down views of Earth at different altitudes 79
4.12 As the camera descends towards the ground looking straight

down, the chunk tree grows but the number of rendered chunks
remains relatively constant due to culling. 80

4.13 Chunks yielded by the distance based chunk selection algo-
rithm. Brooklyn, Manhattan and New Jersey is seen in the
camera view. 81

4.14 Culling of chunks with distance based chunk selection 82
4.15 The number of chunks effected by culling 82
4.16 Chunks yielded by the projected area based chunk selection

algorithm. Brooklyn, Manhattan and New Jersey is seen in
the camera view. 83

4.17 Culling of chunks with area based chunk selection 84
4.18 The number of chunks effected by culling 84
4.19 Comparison of distance based and area based chunk selection . 85
4.20 Comparison of using level blending and no blending. Level

blending hides edges the underlying chunks 86

viii

4.21 Comparison of level blending and no blending. The LOD scale
factor is set low to show the resolution penalty of using blending 87

4.22 Comparison of distance based and area based chunk selection
at the Equator and the North Pole. D = distance based, A

= area based . 88
4.23 Chunk tree over time when browsing the globe 89
4.24 Vertex jittering of model space rendering 90

ix

Chapter 1

Introduction

Scientific visualization of space research, also known as astro-visualization,
works as an important tool for scientists to communicate their work in ex-
ploring the cosmos. 3D computer graphics has shown to be an efficient tool
for bringing insights from geological and astronomical data, as spatial and
temporal relations can intuitively be interpreted through 3D visualizations.

Researching and mapping celestial bodies other than the Earth is an
important part of expanding the space frontier; rendering these globes using
real gathered map and terrain data is a natural part of any scientifically
accurate space visualization software.

Important parts of a software for visualizing celestial bodies include the
ability to render terrains together with color textures of various sources. The
focus of this thesis is put on globe rendering using high fidelity geograph-
ical data such as texture maps, maps of scientific parameters, and digital
terrain models. The globe rendering feature with the research involved was
implemented for the software OpenSpace. The implementation was sepa-
rated enough from the main program to avoid dependencies and make the
thesis independent of specific implementation details.

1.1 Background

1.1.1 OpenSpace

OpenSpace is an open-source, interactive data visualization software with
the goal of bringing astro-visualization to the broad public and serve as a
platform for scientists to talk about their research. The software supports
rendering across multiple screens, allowing immerse visualizations on tiled
displays as well as in dome displays using multiple projectors [1].

1

With a real time rendering software such as OpenSpace, the human cu-
riosity involved in exploration easily becomes obvious when the user is given
the ability to freely fly around in space and near the surface of other worlds
and discover places they probably never can visit in real life. Even more
so is the case of public presentations where researchers such as geologists
can go into details about their knowledge and showing it through scientific
visualization.

An important part of the software is to avoid the use of procedurally gen-
erated data. This is to express where the frontier of science and exploration
is currently at and how it progresses through space missions with the goal of
mapping the Universe. A general globe browsing feature provides a means of
communicating this progress through continuous mapping of planets, moons
and dwarf planets within our solar system.

1.1.2 Globe Browsing

The term globe browsing can be described as exploration of geospatial data
on a virtual representation of a globe. The word globe is a general term used
to describe nearly elliptical celestial objects such as planets, moons, dwarf
planets and asteroids.

Globe rendering with the purpose of multi-scale browsing has been used
for quite some time in flight simulators, map services and astro-visualization.
Prerendered flight paths were visualized as early as the late 1970s by NASA’s
Jet Propulsion Laboratory [2].

Google Earth [3] enables browsing of the Earth within a web browser
using geometries for cities of high detail. The National Oceanic and Atmo-
spheric Administration (NOAA) provides a sophisticated sphere rendering
system, ”Science On a Sphere”, with the ability to visualize a vast amount
of geospatial data on spheres with a temporal dimension [4].

There are other commercial softwares that enables larger scale visualiza-
tion of the Universe with real positional data gathered through research by
the National Aeronautics and Space Administration (NASA), the European
Space Agency (ESA) and others. Satellite Toolkit (STK) enables this by inte-
grating ephemeris information through the SPICE interface [5] which allows
accurate placing of celestial bodies and space crafts within our solar system
using real measured data. Uniview from SCISS AB also enables SPICE in-
tegration with sophisticated rendering techniques and dome theatre support
[6].

There are other significant globe browsing softwares used in dome theatres
such as World Wide Telescope (WWT) [7], Evans & Sutherland’s Digistar
[8] and Sky-Skan’s DigitalSky [9].

2

Table 1.1: Relevant features of different globe browsing softwares

Observable Focus on Dome Ephemeris Scientific Free Open

Universe scale configuration support data integrated data only to use source

Google Maps ✔ ✔

STK ✔ ✔

Uniview ✔ ✔ ✔ ✔

WWT ✔ ✔ ✔ ✔ ✔ ✔

Digistar ✔ ✔ ✔ ✔

DigitalSky ✔ ✔ ✔ ✔

Outerra ✔

Space Engine ✔ ✔ ✔

OpenSpace Future Plan ✔ ✔ ✔ ✔ ✔

Other relevant softwares that currently do not support dome configura-
tion rendering but none the less are very adequate in their techniques of in-
tegrating globe browsing and globe rendering include Outerra [10] and Space
Engine [11]. Both focusing on merging real data with procedurally generated
terrains where real data is not available.

Geographic information systems (GIS) are softwares with the purpose of
gathering a wide range of geographic map data and visualizing it in various
different ways. Even though most of these softwares use GIS features, many
of them are not considered GIS. However, they all have the globe browsing
feature in common. Technicalities in how it is implemented varies as their
end target users are different.

In table 1.1, features relevant to globe browsing in public presentations are
shown and compared between different visualization softwares that integrate
globe browsing.

1.2 Objectives

The goal of this thesis is not only to provide OpenSpace with a globe browsing
feature. There are some specific demands that play a significant role in the
focus of this work. These are listed below:

1. Ability to retrieve map data from the most common standardized web
map data interfaces: WMS, TMS and WMTS.

2. Ability to render height maps and color textures with up to 25 cm per
pixel resolution

3. Ability to layer multiple map datasets on top of each other. This
makes it possible to visualize a range of scientific parameters on top of
a textured globe

3

4. Globe browsing should be done at interactive frame rates: at least 60
frames per second on modern consumer gaming graphics cards

5. Correct positional mapping of objects rendered near the globe surface

6. Support animation of map datasets with time resolution

7. An intuitive interaction mode is also required to get the most out of
globe browsing. It must support:

(a) Horizontal following of reference ellipsoid

(b) Decrease in sensitivity when closer to the surface of the globe

(c) Terrain following to avoid popping down under the surface

1.3 Delimitations

To focus on the important aspects of globe browsing and its purposes for
public presentations, some important delimitations had to be taken into con-
sideration.

We do not consider rendering of globes with distances to the origin greater
than the radius of our solar system. Direct imaging of exoplanets is far from
usable for mapping and is mainly a method for locating planets [12]. Since we
don’t yet have map data for exoplanets, and OpenSpace does not currently
aim at producing procedurally generated content, visualization of exoplanets
is not the focus for this thesis.

One important delimitation for the project is to limit the geometry of a
globe to height mapped grids. This will make it possible to perform vertex
blending on the GPU as well as simplify the implementation to a uniform
method of rendering across the whole globe.

We will not focus on re-projecting maps between different georeferenced
coordinate systems. Therefore the implementation must be limited to reading
a specific map projection. Reprojecting maps can be considered future work
to generalize the ability to read map data as well as optimizing rendering
output and performance.

One goal of OpenSpace is to produce awe inspiring visual effects. The
current state of the project requires the foundations to be in place and globe
browsing is one of the main features that need to be implemented before real
sophisticated rendering techniques can be developed. We will not consider
rendering of atmospheres or water effects and we will not consider shad-
ing techniques that requires changing of the current rendering pipeline of
OpenSpace such as deferred shading.

4

1.4 Challenges

There are multiple technical challenges to tackle when designing a virtual
globe renderer. Cozzi and Ring [2] define the main challenges as following:

• Precision - In order to render small scale details of a virtual globe and
also dolly out to see multiple virtual globes within the solar system,
the limited precision of computer arithmetics needs to be considered.

• Accuracy - Modeling globes as spheres is usually not a very accurate
approach, as many planets and moons that rotate have different polar
and equatorial radii.

• Curvature - The curved nature of globes implies some extra chal-
lenges as opposed to worlds modeled based on flat surfaces. The chal-
lenge includes finding a suitable 2D-parameterization for tessellation
and mapping.

• Massive datasets - It is usual for real world geographical datasets
to be too large to fit in GPU memory, RAM and even local drives.
Instead, data need to be fetched from remote servers on demand using
a so called out-of-core approach to rendering.

• Multithreading - The need for multithreading is necessary as the pro-
gram needs to retrieve geographical data from multiple sources, while
at the same time retain a steady frame rate for rendering.

Details in issues and proposed solutions to these challenges will be dis-
cussed throughout the thesis.

5

Chapter 2

Theoretical Background

A sophisticated globe rendering system needs to rely on some theoretical
foundations and algorithms developed for globe rendering. These founda-
tions work as a base for the research performed for the thesis and the imple-
mentation. The research is based on the proposed challenges.

2.1 Large Scale Map Datasets

Global maps with high level of detail can easily become too large to be
stored and read locally on a single machine. A common way of storing large
maps is by representing them using several overviews. An overview is a
map representing the same geographical area as the original map but down
sampled by a factor of two just like a lower level of a mip map texture. Figure
2.1 shows how the size of the maps in raster coordinates decreases with the
overview number.

...Overview: 0 1 n

y

x

y

2

x
2

y

2n

x
2n

Figure 2.1: The size of the map is decreasing exponentially with the overview.
Figure adapted from [13]

The physical disk space of large global map datasets is often measured
in terabytes or even petabytes. In order to deal with such large datasets,
web based services allow clients to specify parts of the map to download at
a time. This is an important aspect in the out-of-core rendering required for
globe visualization.

6

2.1.1 Web Map Services

To standardize web requests for map data, the Open GIS Consortium (OGC)
specified a web map service interface [14] and from that, specifications of sev-
eral other map service interfaces have followed. The most common standards
are Web Map Service (WMS), Tile Map Service (TMS) and Web Map Tile
Service (WMTS). Some other, more specific, examples of WMS-like services
are WorldWind, VirtualEarth and AGS.

WMS

The WMS interface instructs the map server to produce maps as image files
with well defined geographic and dimensional parameters. The image files can
have different format and compression depending on the provider. A WMS
server has the ability to dynamically produce map patches of arbitrary size
which puts some load on the server side [14]. The basic elements supported
by all WMS providers are the GetCapabilities and the GetMap operations.
GetCapabilities gives information about the available maps on the server and
their corresponding georeferenced metadata. The GetMap operation returns
the map or a part of the map as an image file.

WMS requests are done using HTTP GET where the standardized request
parameters are provided as query parameters in the URL [14]. For example,
setting the query parameter BBOX=-180,-90,180,90 specifies the size of the
map in georeferenced coordinates while the parameters WIDTH and HEIGHT

specify the size of the requested image in raster coordinates. All name and
value pairs for the GetMap request are defined under the OpenGIS Web Map
Server Implementation Specification [14].

TMS

Tile Map Service (TMS) was developed by the Open Source Geospatial Foun-
dation (OSGeo) as a simpler solution to requesting maps from remote servers.
The specification uses integer indexing for requesting specific precomputed
map tiles instead of letting the server spend time on producing maps of ar-
bitrary dimensions. The TMS interface is similar to WMS but simpler and
it does not support all the features of WMS [15].

WMTS

Web Map Tile Service (WMTS) is another standard by OGC that requires
tiled requests. It supports many of the features of WMS but, similar to
TMS, removes the load of image processing from the server side and instead

7

forces the client to handle combination and cutouts of patches if required.
The standard specifies the GetCapabilities, GetTile and GetFeatureInfo oper-
ations. These operations can be requested with different message encodings
such as Key-Value Pairs, XML messages or XML messages embedded in
SOAP envelopes [16].

Tiled WMS

Before the WMTS standard was developed, some servers had already em-
barked on the tiled requests by limiting the valid bounding boxes to values
that only produce precomputed tiles. These services can be referred to as
Tiled WMS and are nothing more than specified WMS services where the
server limits the number of valid requests [16].

2.1.2 Georeferenced Image Formats

There are several different standards for handling image data used in GIS
softwares. Some common file formats with image data and/or georeferenced
information that are used in the below mentioned imagery products are:

• GeoTIFF - TIFF image with the inclusion of georeferenced metadata

• IMG - Image file format with georeferenced metadata

• JPEG2000 - Georeferenced image format with lossy or lossless com-
pression

• CUB - Georeferenced image file standard created by Integrated Soft-
ware for Imagers and Spectrometers (ISIS)

2.1.3 Available Imagery Products

There are several organizations working on gathering GIS data that can be
visualized as flat 2D maps or projected on globes. Many of them provide
their map data through web map services. However, they are often defined
in different formats and sometimes available only as downloadable image
files.

Earth

NASA Global Imagery Browse Services (GIBS) provides several global map
datasets with information about Earth’s changing climate [17]. The two
satellites Aqua and Terra orbit the Earth and are continuously measuring

8

multi band quantities such as corrected reflectance and surface reflectance
along with a range of scientific parameters such as surface and water tem-
peratures, ozone, carbon dioxide and more. Many of the GIBS datasets are
updated temporally so that changes can be seen over time. Map tiles are
requested through a TMS interface and a date and time parameter can be
set to specify a map within a certain time range.

Environmental Systems Research Institute (ESRI) is the provider of the
software ArcGIS that lets their users create and publish map data through
different types of web map services. There are a lot of free maps to use;
not only for Earth but other globes are covered too. ESRI supports a web
publication interface where web maps can be searched and studied in an
online map viewer.

National Oceanic and Atmospheric Administration (NOAA) for the U.S.
Department of Commerce gathers and provides weather data of the US that
are hosted through different web map services using the ArcGIS online [18]
interface by ESRI.

Mars

The first global color images taken of Mars were by the two orbiters of the
Viking missions that launched in late 1975. NASA Ames worked on creating
the Mars Digital Image Models (MDIM) by blending a mosaic of images
taken by the orbiters. United States Geological Survey (USGS) provides
downloading of image files in CUB or JPEG2000 format. The maps are still
the highest resolution global color maps of the planet [19].

NASA’s Mars Reconnaissance Orbiter (MRO) is a satellite that has been
orbiting Mars since 2006, gathering map data by taking pictures of the sur-
face. The satellite has three cameras; the Mars Color Imager (MARCI) for
mapping out daily weather forecasts, the Context camera (CTX) for imaging
terrain and the High Resolution Imaging Science Experiment (HiRISE) cam-
era for mapping out smaller high resolution patches covering limited surface
areas of interest. NASA enables downloading of local patches and digital
elevation models (DEMs) and grayscale images taken by the CTX [20] and
the HiRISE [21] cameras in IMG and GeoTIFF formats.

Moon

The Lunar Mapping Modeling Project (LMMP) is an initiative by NASA
to gather and publish map data of the Moon from a vast range of lunar
missions. The Lunar Reconnaissance Orbiter (LRO) is a satellite orbiting
the moon and gathering map data for future landing missions. These maps

9

have been put together into global image mosaics as well as DEMs. Most
global maps from LMMP can be accessed via the “OnMoon” web interface
[22].

2.2 Modeling Globes

We will discuss different proposed methods used for modeling and render-
ing of globes. The globe can be modeled either as a sphere or an ellipsoid
and there are different tessellation schemes for meshing the globe. The tes-
sellation depends on a map projection and out-of-core rendering requires a
dynamic level of detail approach for rendering.

2.2.1 Globes as Ellipsoids

Planets, moons and asteroids are generally more accurately modeled as ellip-
soids than as spheres. Planets are often stretched out along their equatorial
axes due to their rotation which causes the centripetal force to counter some
of the gravitational force acting on the mass. This effect was proven in 1687
by Isaac Newton in Principia Mathematica [23]. The rotation causes a self-
gravitating fluid body in equilibrium to take the form of an oblate ellipsoid,
otherwise known as a biaxial ellipsoid with one semimajor and one semiminor
axis. Globes can be modeled as triaxial ellipsoids for more accuracy when it
comes to smaller, more irregularly shaped objects. For example Phobos, one
of Mars’ two moons, is more accurately modeled as a triaxial ellipsoid with
radii of 27× 22× 18 km [2].

The World Geodetic System 1984 (WGS84) standard defined by National
Geospatial-Intelligence Agency (NGA) models the Earth as a biaxial ellip-
soid with a semimajor axis of 6,378,137 meters and a semiminor axis of
6,356,752.3142 meters [2]. This is what is known as a reference ellipsoid; a
mathematical description that approximates the geoid of the earth as closely
as possible. The WGS84 standard is widely used for GIS and plays an im-
portant role in accurate placements of objects such as satellites or space-
crafts with position coordinates relatively close to the Earth’s surface. In
the WGS84 coordinate system, the x-axis points to the prime meridian, the
z-axis points to the North pole and the y-axis completes the right handed
coordinate system, see figure 2.2.

10

Figure 2.2: The WGS84 coordinate system and globe. Figure adapted from
[13]

2.2.2 Tessellating the Ellipsoid

Triangle models are still the most common way of modeling renderable ob-
jects in 3D computer graphics softwares, even though other rendering tech-
niques such as volumetric ray casting also can be considered for terrain ren-
dering [2, p. 149].

A triangle mesh, or more generally a polygon mesh, is defined by a limited
number of surface elements. This means that ellipsoids need to be approx-
imated by some sort of tessellation or subdivision surface when modeled as
a polygon mesh. There are several techniques for tessellating an ellipsoid.
Some of them are covered in this section.

Geographic Grid Tessellation

Tessellating the ellipsoid using a geographic grid is a very straightforward
approach. Ellipsoid vertex positions can be calculated using a transform
from geographic coordinates to Cartesian model space coordinates [2, p. 25].
Figure 2.3 shows three geographic grid tessellations of a sphere with constant
number of latitudinal segments of 4, 8 and 16 respectively.

A common issue with geographic grids is something referred to as polar
pinching. At both of the poles, segments will be pinched to one point which
leads to an increasing amount of segments per area. This in turn results in
oversampling in textures as well as possible visual artifacts in shading due
to the very thin quads at the poles as well as possible performance penalties
for highly tessellated globes.

11

Figure 2.3: Geographic grid tessellation of a sphere with constant number of
latitudinal segments of 4, 8 and 16 respectively

Figure 2.4: Quadrilateralized spherical cube tessellation with 0, 1, 2 and 3
subdivisions respectively

Quadrilateralized Spherical Cube Tessellation

Another common tessellation method for spheres which can be generalized to
ellipsoids is the quadrilateralized spherical cube tessellation. The standard
approach is to subdivide a cube centered in the origin and then normalize
the coordinates of all vertices to map them on a sphere. There are also other
more complicated schemes designed to work with specific map projections
[24].

To model an ellipsoid from a sphere, the vertices can be linearly trans-
formed with a scaling in the x, y and z directions individually. Figure 2.4
shows a tessellated spherical cube of four different detail levels.

Hierarchical Triangular Mesh

The hierarchical triangular mesh (HTM) is a method of modeling the sky
dome as a sphere proposed by astronomers in the Sloan Digital Sky Survey
[25]. Instead of uniformly dividing cube faces, an alternative option is to
subdivide a normalized octahedron by, in each subdivision step, split every
triangle into four new triangles, see figure 2.5.

12

Figure 2.5: Hierarchical triangular mesh tessellation of a sphere with 0, 1, 2
and 3 subdivisions respectively

Figure 2.6: HEALPix tessellation of three different levels of detail

Hierarchical Equal Area IsoLatitude Pixelation

Hierarchical Equal Area IsoLatitude Pixelation (HEALPix) is a spherical
tessellation scheme with corresponding map projection. The base level of the
tessellation is built up of twelve quads, similar to a rhombic dodecahedron,
which each can be subdivided further. The tessellation in figure 2.6 shows
how the vertices in the HEALPix tessellation leads to curvilinear quads.

Geographic Grid Tessellation With Polar Caps

In their description of the ellipsoidal clipmaps method, Dimitrijević and
Rančić introduces polar caps to avoid polar issues related to geographic grids
[24]. The polar caps are simply used as a replacement of the problematic,
oversampled regions around the poles. The caps can be modeled as grids
projected onto the ellipsoid surface in their own georeferenced coordinate
systems. One obvious issue with polar caps is the edge problem that occurs
due to the fact that the caps are defined as separate meshes with vertices
that do not coincide with the geographic vertices of the equatorial region, see
figure 2.7. Dimitrijević and Rančić solves the issue by using a type of edge
blending between the equatorial and polar segments [24]. Figure 2.7 shows
a sphere tessellated with one equatorial region and two polar regions.

13

Figure 2.7: Geographic tessellation of a sphere with polar caps

2.2.3 2D Parameterisation for Map Projections

A map projection P defines a transformation from Cartesian model space
coordinates to georeferenced (projected) coordinates, as in equation 2.1. The
inverse projection P −1 is used to find positions on the globe surface in model
space given georeferenced coordinates as in equation 2.2.

(

s
t

)

georeferenced

= ~P (x, y, z), (2.1)

x
y
z

modelspace

= ~P −1(s, t), (2.2)

where x, y and z are the Cartesian coordinates of a point on the ellipsoid
surface. The parameters s and t are georeferenced coordinates defining all
positions on the globe. The georeferenced coordinates can have different
definition range depending on which projection is used. An example can be
letting is s = φ ∈ [−90, 90] and t = θ ∈ [−180, 180] which are latitude and
longitude respectively for geographic projections.

The globally positive Gaussian curvature of any intrinsic ellipsoid sur-
face makes it impossible to unproject it on a flat 2D surface without any
distortions. Since it is embedded in a 3D space, some distortions must be
introduced when unprojecting the surface. The distortion can differ depend-
ing on the projection used. Equal-area projections preserve the size of a
projected area as ∂s∂t/∂s0∂t0 = 1, while conformal projections preserve the
shape of projected objects as ∂s/∂t = 1; s0 and t0 are coordinates at the
center of the projection with no distortion. No global projection can be both
area-preserving and conformal [24].

There are several possibilities for defining a coordinate transform for map
projections. A common approach is to project the ellipsoid onto another
shape that allows for being flattened out without distortion, such as a cube,
a cylinder or a plane. These types of shapes are known as developable shapes
and have zero Gaussian curvature.

14

The choice of map projection is tied together with the choice of ellipsoid
tessellation. This is because the map often needs to be tiled up when render-
ing. Each tile has its local texture coordinate system which need to have a
simple transform from the georeferenced coordinate system for texture sam-
pling. If the tiles can be affinely transformed to the georeferenced coordinate
system, texture sampling can be done on the fly; otherwise the georeferenced
coordinates need to be re-projected which may be computationally heavy or
impossible for real time applications.

The European Petroleum Survey Group (EPSG) [26] has defined several
standards for map projections of the Earth. Many of these are mentioned
when discussing the different projections.

Geographic Projections

Geographic projections are widely used standards for parameterization of
ellipsoids. The ellipsoid is projected onto a cylinder which is then unrolled
to form the 2D plane of the projected coordinates.

Geographic coordinates are defined with a latitude φ and a longitude θ
and works together with geographic tessellations of ellipsoids. A common
issue with geographic projections is oversampling around the poles, as men-
tioned in section 2.2.2. At the poles, all longitudes will always map onto one
point and the distortion increases with the absolute value of the latitude.
Figure 2.8 shows an unprojected geographic map and how it wraps around
the globe.

Figure 2.8: Geographic map projection. Figure adapted from [13]

Geocentric projection The simplest geographic parameterization uses
geocentric coordinates. Here the latitude and longitude are defined as the
angle between a vector from the origin to a point on the ellipsoid surface and
the xy− and xz−planes respectively.

15

Geodetic projection Another standard, well used in ellipsoid representa-
tions makes use of so called geodetic coordinates. This variety of geographic
coordinate systems is defined by the normal of the surface of the ellipsoid
where the longitudinal angle is the angle between the normal and the yx-
plane.

Figure 2.9 shows the difference between geocentric latitudes along with
difference in surface normals.

x

z

~p
n̂c

n̂d

φdφc

Figure 2.9: Difference between geocentric latitudes, φc and geodetic lati-
tudes, φd for a point ~p on the surface of an ellipsoid. The figure also shows
the difference between geocentric and geodetic surface normals, n̂c and n̂d,
respectively.

In the case of perfect spheres, geocentric and geodetic projections of any
point will yield the same result.

Geodetic coordinates are among the most commonly used geo referenced
coordinate systems when mapping ellipsoids to two dimensions.

Cozzi and Ring describes the transform from geodetic coordinates in the
ellipsoid class [2, p. 25]. For the Earth, the most commonly used geodetic
coordinate space is defined in the EPSG:4326 standard where the WGS84
ellipsoid is used [27].

Mercator Projection

The mercator projection is a cylindrical projection widely used for presenting
global maps in unwrapped form. The mercator projection preserves the hor-
izontal to vertical ratio for small objects on the map. Hence, the mercator is
a conformal projection in contrast to the geocentric and geodetic projections,
which results in a non unit value in the ratio between the longitudinal and
latitudinal differentials, see figure 2.10.

The mercator projection compensates for the longitudinal distortion by
introducing a latitudinal distortion as well. Due to the polar singularities

16

(a) The equirectangular
projection is not confor-
mal. Figure from [28]

(b) The mercator pro-
jection is conformal and
preserves aspect ratio.
Figure from [29]

Figure 2.10: Unwrapped equirectangular and mercator projections. The mer-
cator projection works when it is unwrapped due to it being conformal (pre-
serving aspect ratio).

which lead to infinite latitudes at the poles when φd = ±90, the domain of
definition for the latitudes need to be constrained in mercator projection, see
figure 2.11.

Figure 2.11: Mercator projection. Figure adapted from [13]

The EPSG:3857 standard for mercator projection of the Earth, also known
as web mercator, constrains the domain to φ ∈ [−85.06, 85.06] [27]. The stan-
dard uses a different projection that does not diverge at the polar regions.
Web mercator is used by most online web map applications including Google
Maps, Bing Maps, OpenStreetMap, Mapquest, ESRI and Mapbox [30].

17

Cube Map

Cube maps lack the polar singularities apparent in geographic parameteri-
zations. The parameterized coordinates are often discretized to the six sides
of the cube, but they can also map directly to a global representation of an
unwrapped cube, see figure 2.12.

Figure 2.12: Cube map projection. Figure adapted from [13]

Due to the traditions of map projections this is not a common format
used for map services so reprojection from a more common format is often
required.

There are different cube map projections with different amount of area-
and aspect distortions. Dimitrijević and Rančić mention and compares spher-
ical cube, adjusted spherical cube, Outerra spherical cube and quadrilateral-
ized spherical cube [24].

Tessellated Octahedral Adaptive Subdivision Transform

The Tessellated Octahedral Adaptive Subdivision Transform (TOAST) map
format used in the globe browsing of Microsoft’s World Wide Telescope works
together with the HTM tessellation [31]. Each triangular segment of the
TOAST map maps to a triangle of a sphere that is tessellated as an octahe-
dron and subdivided to form a sphere, see figure 2.13.

The TOAST format is just as the cube maps not a very well supported
format for map providers and harder to use together with some of the most
common level of detail approaches due to the fact that most of them are
optimized for rectangular and not triangular map tiles.

Hierarchical Equal Area IsoLatitude Pixelation

The map projection that is used for the HEALPix tessellation is equal-area as
the name suggests. Figure 2.14 shows how the map wraps onto the sphere.

18

Figure 2.13: TOAST map projection. Figure adapted from [13]

The positive aspect about HEALPix compared to the TOAST format is
that the map is tiled into quads and not triangles which means that it is
better suitable for the chunked LOD [2] algorithm. The map format is used
by NASA for mapping the cosmic microwave background radiation for the
Microwave Anisotropy Probe (MAP) [32], but is otherwise an uncommon
format when it comes to map services. That means that the maps need to
be re-projected from the more common formats for wider support.

Figure 2.14: HEALPix map projection. Figure adapted from [13]

Polar Projections

For parameterization of limited parts of the globe, such as the isolated poles,
there are different projections to consider. Most common are different types
of azimuthal projections. These projections are defined by projecting all
points of the map through a common intersection point and onto a flat sur-
face. The Gnomonic projection maps all great circle segments (geodesics) to
straight lines by having the common intersection point in the center of the
globe.

Stereographic projections are defined when the common intersection point
is positioned on the surface of the globe on the opposite side of the pole
to project. Polar stereographic projections are used to parameterize the

19

surface of the poles of the Earth. The standards EPSG:3413 and EPSG:3031
define the stereographic projections for the North Pole and the South Pole
respectively [27].

Dimitrijević and Rančić use another polar coordinate system to re-project
from geodetic coordinates in runtime. The transformation is a rotation of 90
degrees around the global x−axis so that the resulting parametric coordinates
of the pole are given in their own geographic space with the meridian as
equator. This projection is also known as the Cassini projection and it can be
both defined for spheres as well as generalized to ellipsoids. Polar projections
are shown in figure 2.15.

(a) Cassini (b) Gnomonic (c) Stereographic

Figure 2.15: Polar map projections. Figure adapted from [13]

2.3 Dynamic Level of Detail

Dynamic level of detail (LOD) is an important part in handling the extensive
amount of data used in an out-of-core rendering software. The goal is to
maximize the visual information on screen while minimizing the workload.
In their book 3D Engine Design for Virtual Globes, Cozzi and Ring describes
LOD rendering algorithms by three typical steps: [2, p. 367]

1. Generation - Create versions at different level of detail of a model.

2. Selection - Choose a version based on some criteria or error metric (e.g.
distance to object or the projected area it occupies on the screen).

3. Switching - Transition from one version to another in order to avoid
noticing of the change in LOD known as popping artifacts.

There are different types of LOD approaches for terrain rendering and a
suitable approach should be chosen based on characteristics of the terrain.
Terrains can for example be restricted to being represented as height maps -

20

Figure 2.16: A range of predefined meshes with increasing resolution. Dy-
namic level of detail algorithms are used to choose the most suitable mesh
for rendering

a characteristic that can be exploited by the rendering algorithm. Cozzi and
Ring describe the following three categories of LOD approaches: Discrete
Level of Detail, Continuous Level of Detail and Hierarchical Level of Detail
[2, p. 368-371].

2.3.1 Discrete Level of Detail

In the Discrete Level Of Detail (DLOD) approach, multiple different rep-
resentations of the model are created at different resolutions. DLOD is ar-
guably the most simple LOD algorithm. It works not only for digital terrain
models, but for arbitrary meshes. The set of terrain representations can
either be predefined or generated using mesh simplification algorithms.

At run time, the main objective is to select one (or generate) a suitable
representation. This approach does not provide any means of dealing with
large scale datasets which requires multiple levels of detail at the same time.
This makes it unsuitable for globe rendering [2].

2.3.2 Continuous Level of Detail

The continuous LOD (CLOD) approach represents a model in a way that
allows the resolution to be selected arbitrarily. This is usually implemented
by a base mesh combined with a sequence of operations that successively
changes the level of detail of the model. Two typical such operations are
“edge collapse” (removes two triangles from the mesh) and its inverse, “vertex
split” (adds two triangles to the mesh). These operations are illustrated in
figure 2.17.

According to Cozzi and Ring [2, p. 368] CLOD has previously been
the most popular approach for rendering terrain at interactive rates, with
implementations such as Real-time Optimally Adaptive Mesh (ROAM) [33].
The main reason CLOD algorithms are not widely employed these days is

21

V ertex Split −→
←− Edge Collapse

Figure 2.17: Mesh operations in continous LOD

due to the increase in triangle throughput on modern GPUs, causing the
CLOD operations done on the CPU in many cases to act as a bottleneck for
the rendering.

A special branch of CLOD worth mentioning is the so called infinite LOD.
In this approach the terrain is represented by a mathematical function; an
implicit surface. These functions can be defined by fractal algorithms and
produce complex characteristics or they can define simple geometric shapes
such as spheres or ellipsoids. As all points on these types of surfaces are
precisely defined, triangle meshes can be generated with no limit on the level
of detail. This approach is not suitable for incorporating real world data, but
it is used by terrain engines such as Outerra and Terragen to procedurally
generate terrain at any desired level of detail [34] [35].

2.3.3 Hierarchical Level of Detail

Hierarchical Level of Detail (HLOD) can be seen as a generalization of DLOD.
HLOD algorithms operates on hierarchically arranged, predefined chunks of
the full model. Each chunk is processed, stored and rendered separately. By
doing this, HLOD approaches tackles the weaknesses of CLOD, essentially
by doing the following:

1. Reducing processing time on CPU: The only CPU task that HLOD al-
gorithms has to deal with during runtime is to select a suitable subset
of the predefined chunks for rendering. This is a relatively fast proce-
dure in contrast to iteratively applying changes to the raw geometry,
as done in CLOD.

2. Reducing data traffic to the GPU: Data is uploaded to the GPU in
larger batches but not very often, since the data is static and GPU
caching can be done. With CLOD, the geometry data is updated on
a per-frame basis and can not be cached on the GPU. Being able to
perform GPU caching allows HLOD to better minimize the traffic to
the GPU.

22

HLOD uses spatial hierarchical data structures such as binary trees,
quadtrees or octrees for storing the chunk data. The root node of the tree
holds a full representation of the model at its lowest level of detail in one
single chunk. At successive levels, the model is represented at a higher level
of detail but divided up into several chunks. This concept is illustrated with
a quad tree holding chunks representing a bunny model in figure 2.18.

Level 0

Level 1

Level 2

Figure 2.18: Bunny model chunked up using HLOD. Child nodes represent
higher resolution representations of parts of the parent models

Generally, selecting all the chunks at a specific level in the tree yields a
complete representation of the model. Furthermore, chunks may be selected
from different levels for different parts of the model and still yield a full
representation of the model. This allows for view dependent rendering of the
model. Algorithm 1 describes pseudo code for recursively rendering the full
model at view dependent level of detail.

RenderLOD (Camera C, ChunkNode N)

if ErrorMetric(C, N) < threshold then
Render(N , C)

else

for child in children(N) do
RenderLOD(child, C)

end

end

Algorithm 1: Selecting chunks to render. The error metric depends on
the camera state and the chunk to render. A given chunk always has a
smaller error metric than its parent.

23

This example uses a depth first approach for rendering of chunks. Other
common schemes for traversing the hierarchy are breadth first and inverse
breadth first.

The algorithm traverses the tree and calculates an error metric at each
node with respect to the current camera position. If the calculated error is
larger than a certain threshold, the algorithm recursively repeats the pro-
cedure for all the chunk’s children, which have higher level of detail. This
general scheme can be used for rendering one-dimensional curves (using a bi-
nary tree structure), two-dimensional surfaces (using a quadtree) or volumes
(using an octree).

Another key feature of HLOD as opposed to DLOD and CLOD is that
it can naturally be integrated with out-of-core rendering, as chunks can be
loaded into memory on-demand and deleted when not needed.

2.4 Level of Detail Algorithms for Globes

A number of different LOD algorithms has been introduced for the purpose
of globe rendering. Two common algorithms used are Chunked LOD and
Geometry Clipmaps, as pointed out by Cozzi and Ring [2].

2.4.1 Chunked LOD

The Chunked LOD method fits into the HLOD category and works by break-
ing down the surface of the globe into a quadtree of chunks. There are several
different ways of spatially organizing chunks and they depend on the tessel-
lation of the globe.

Using a geographic grid tessellation, the chunks are in geographic space
using latitude φ and longitude θ coordinates. Figure 2.19 demonstrates the
layout of chunks as they are mapped in geographic coordinates onto an el-
lipsoid representation of a globe.

(a) Chunk tree (b) Geodetic chunks (c) Globe

Figure 2.19: Chunked LOD for a globe

24

Chunks

Chunks should store the following data:

1. A mesh defining the terrain geometry (positions, normals, texture co-
ordinates).

2. A monotonic geometric error based on the vertices distances to the fully
detailed mesh. The children of a chunk always have smaller geometric
error as they can better fit the highest level of detail model.

3. A known bounding volume encapsulating the mesh and all the chunk’s
children. This is used along with the geometric error metric when
selecting suitable chunks for rendering.

Depending on the implementation of the chunked LOD algorithm, these
properties can be either calculated on the fly or preprocessed as suggested by
Cozzi and Ring [2, p. 447]. Furthermore, the chunk mesh must have defined
edges along its sides such that when two adjacent chunks are rendered next
to each other, there is no gap in between them.

Culling

An important thing to consider when dealing with chunks of a virtual globe
is the fact that the chunks that are selected for rendering might not actually
be visible on the screen. Needless to say, this is a waste of computational
power and by eliminating these unnecessary draw calls, the performance of
the globe renderer can be increased.

Camera frustum culling This is done by testing a bounding box of the
chunk for intersection with the camera frustum. If the chunk is completely
outside the frustum, the chunk can safely be culled as it will not be visible
in the rendered image. See figure 2.20a.

Horizon culling Even after camera frustum culling there are chunks that
still do not contribute to the rendered image because they are positioned
behind the horizon. Figure 2.20b illustrates that most of a globe is actually
invisible to any observer. This can be used as a basis for culling some of the
remaining chunks.

25

(a) Frustum culling (b) Horizon culling

Figure 2.20: Culling for chunked LOD. Red chunks can be culled due to them
being invisible to the camera

Switching

Even when chunks can be selected in a way that guarantees a maximum pixel
error per vertex, the fact that full areas of multiple triangles are replaced all
at once causes a drastic change in the rendered view. Even when the updates
are small per vertex, the update of whole chunk areas may be easily noticed.
This is what is referred to as popping.

Minimizing popping artifacts is typically done by smoothly transitioning
between levels over time. Cozzi and Ring suggest an approach, where along
with each vertex, a delta offset is also stored [2, p. 451]. This delta offset
stores the difference between the chunk itself and the same region within the
parent chunk. Using this difference, new vertices can be placed on already
defined edges and then interpolated into their actual positions. Figure 2.21
illustrates the idea.

(a) An edge at a given
chunk level

(b) The same edge at the
next level

(c) The new vertex is in-
terpolated into its true
place

Figure 2.21: Vertex positions when switching between levels

The interpolation parameter can be based on the distance to the camera
or changed over time for each chunk.

26

Cracks and skirts

As chunks are tiled and rendered next to each other, it is desirable to make
the borders between chunks as unnoticeable as possible. Even though the
chunk meshes are generated according to the requirements mentioned in the
Chunk subsection above, it is not possible to guarantee a watertight edge
between two adjacent chunks of different LOD. Where adjacent chunks have
different detail level, so called T-junctions till emerge. These T-junctions
cause cracks between the chunks as unwanted visual artifacts.

The easiest way to tackle this issue is not to try to remove the cracks,
but instead try to hide them. The most common approach hides the cracks
by simply adding an extra layer of vertices to the sides of sides of the mesh.
This extra layer of vertices, which is also known as a skirt, is offset down
vertically, as illustrated in figure 2.22.

By adding skirts to the chunk meshes, the model will not be rendered
with visible holes in it. Instead, the holes will be filled up with textured
triangles.

(a) No skirts (b) Skirts

Figure 2.22: Chunks with skirts hide the undesired cracks between them

2.4.2 Geometry Clipmaps

A clipmap texture is a dynamic mip map where each image is clipped down
to a constant size. This reduces the amount of memory of the whole texture
to increase linearly instead of exponentially with the number of overlays for
LOD textures [36]. Figure 2.23 a shows the difference between the amount
of texture data stored in a regular mip map compared to a clip map.

The idea of clipmaps can be applied not only to textures but also to ge-
ometries [36]. By representing a terrain by a stack of clipmap geometries
of different sizes, the resolution increases closer to the virtual camera, as il-
lustrated in figure 2.24. As the view point moves around, the grids updates
their vertex positions accordingly to keep the grid centered in the geometry
clipmap stack. The position of each of the levels of the clip map geometries

27

Mip Map

Clip Map

Figure 2.23: Clip maps are smaller than mip maps as only parts of the
complete map need to be stored. Figure adapted from [13]

snaps to a discrete coordinate grid with cell sizes equal to the distance be-
tween two adjacent vertices. Due to the different grid resolution of different
levels, the relative position of each sub grid must change so that they can
snap on a grid with higher level. This is illustrated with the dynamic interior
part of the grid in figure 2.24.

Level 0

Level 1

Level 2

Level 3

Interior

View point

Figure 2.24: The Geometry Clipmaps follow the view point. Higher levels
have coarser grids but covers smaller areas. The interior part of the grid can
collapse so that higher level geometries can snap to their grid

Geometry clipmaps limits the terrain representation to be in the form
of height maps. This is because the clipmap geometry moves around when
the focus point changes and since the underlying terrain should not follow

28

the camera position, the clipmap geometries require vertex shader texture
fetching. The texture coordinates are offset as the geometry clipmap moves
to follow the focus point.

One of the main selling points for geometry clipmaps is the decrease in
CPU workload and the increase in GPU triangle throughput [2]. There is
no need to traverse a hierarchical structure such a quadtree. The number of
draw calls will remain equal the number of clip maps instead of the number of
chunks which is often larger. The frame rate will also be relatively consistent
if the number of layers in the clipmap stack remains constant [2].

2D Grid Geometry Clipmaps

Using geometry clipmaps to achieve dynamic level of detail for a height
mapped grid was proposed by Losasso and Hoppe [37]. The method is
limited to rendering of equirectangular grids. When considering the ellip-
soidal shape of a globe, the clipmap grid can be represented in geographic
coordinates mapped on an ellipsoid where the map texture coordinates in
the longitudinal direction wraps around the anti meridian. Rendering the
clipmap close to the poles however will lead to polar pinching which breaks
the globe as illustrated in figure 2.25.

(a) Near the equator (b) Near a pole

Figure 2.25: Geometry Clipmaps on a geographic grid cause pinching around
the poles, which needs to be handled explicitly

Clipmap grids can also be used to model a spherical cube representation
of a globe to avoid polar issues. This requires six clipmap partitions; one for
each side of the cube.

Spherical Clipmaps

Spherical clipmaps takes advantage of the fact that no observer will ever
see more than half a globe at any time. The vertices of the clipmap are
described in polar coordinates with the center of the grid always following

29

Table 2.1: Comparison between geometry clipmaps and chunked LOD

Geometry Clipmaps Chunked LOD

Preprocessing Minimal Extensive
Mesh Flexibility None Good
Triangle Count High Lower

Ellipsoid Mapping Challenging Straightforward
Error Control Poor Excellent

Frame-Rate Consistency Excellent Poor
Mesh Continuity Excellent Poor

Terrain Data Size Small Large
Legacy Hardware Support Poor Good

the camera position [38]. The coordinates of the vertices will therefore not
have any correspondence to texture coordinates which is why the algorithm
is not widely adopted [24].

Ellipsoidal Clipmaps

Dimitrijević and Rančić introduces ellipsoidal clipmaps as a level of detail
rendering method for globes [24]. It uses a geographic grid for the polar
regions of the globe and solves the polar issues with the use of polar caps. The
advantages compared to spherical cube clipmaps is that it uses the well known
geographic map projection and reduces the number of geometry clipmap
partitions from six to two. The globe is divided up into one equatorial region
and two polar regions. If the distance is close enough to the globe (3,000 km
above the surface for the Earth), a maximum of two partitions is needed at
any time [24].

The area distortion and the aspect distortion of the map projection of
the ellipsoidal clipmap method is low compared to cube map projections
but requires extra care to hide the discontinuities that appear at the edges
between the equatorial and polar partitions [24].

The most generally used level of detail algorithms of today are chunked
LOD and varieties of geometry clipmaps. Cozzi and Ring compare the algo-
rithms and gives the advantages and disadvantages depending on the needs
of the globe browsing software. The main differences are summarized and
presented in Table 2.1 [2, p. 464].

30

2.5 Precision Issues

Modern graphics cards work with floating point variables and single precision
is the common standard [39]. With OpenGL 4.0 came the introduction of
double precision floating point numbers within the GLSL shader program-
ming language [39]. The double precision floating point operations are sig-
nificantly slower than their single precision counterparts [24]; we choose to
avoid double precision floating point operations on the GPU for this reason.

In most computer graphics applications it is often sufficient to describe
positional information in single precision floating point values. However,
when simulating and visualizing the full scale of the universe and at the
same time globes with sub meter resolution, the issues of low precision float
operations easily become predominant unless handled with care.

2.5.1 Floating Point Numbers

A floating point number y is represented by a sign bit s, a significand c ∈ N ,
a base (also known as the radix) b ∈ Z, b > 2 and an exponent q ∈ Z. See
equation 2.3.

y = (−1)s × c× bq (2.3)

These numbers are flexible since they can represent big ranges. They
have varying accuracy depending on the exponent q since the numbers c and
q are stored as integers with a limited number of bits.

In the Institute of Electrical and Electronics Engineers 754 (IEEE 754)
standard, the base b is a constant 2 or 10 and the significand c and the
exponent q are set according to a well defined scheme [40]. With floating point
numbers, operations such as addition and subtraction of values decreases
precision due to a drop in the least significant bits [2]. The precision is
reduced even more due to accumulating errors [2].

2.5.2 Single Precision Floating Point Numbers

A 32 bit floating point number can accurately represent around 7 significant
decimal figures in the IEEE 754 standard [2].

Considering an Earth sized globe with the origin in the center and a
radius of 6× 106 meters, the theoretical vertical resolution is approximately
6×106−7 = 0.6 meters. However, due to arithmetic operations the resolution
reduces even more. Furthermore, these issues get worse when considering
rendering of more objects in a scene that is representing not only one planet
but the entire solar system. The distance from the sun to the earth is roughly

31

1.5×1011 meters which leaves a positional resolution in the order of 1011−7 =
104 meters which is far from acceptable when browsing globes.

2.5.3 Double Precision Floating Point Numbers

A double precision floating point number is able to accurately represent 16
decimal figures [2]. Consider the Voyager 1 spacecraft, which left the solar
system and entered interstellar space in August 25, 2012 and currently is at
a distance in the order of magnitude of 1013 meters. This spacecraft is the
farthest any human made object has gone; farther away than all the planets
and can still be accurately positioned with sub meter resolution using double
precision floating point variables (of course assuming that the positional data
is correct).

NASA’s Navigation and Ancillary Information Facility (NAIF) is the pro-
ducer of the SPICE interface [5]. In SPICE, positional information of celestial
bodies within our solar system are defined in double precision floating point
numbers. Utilizing this precision makes it possible to accurately visualize
space crafts in relation to globes.

2.5.4 Rendering Artifacts

Vertex Position Jittering

One noticeable artifact related to the 32 bit floating point limitation of graph-
ics cards is the discrete positioning of vertices when the origin is far away
from the rendered object. A clear example of this is shown in figure 2.26
where Jupiter’s moon Europa is rendered with single precision floating point
operations and the origin is placed at the barycenter of the solar system.

The artifact is shown as discrete positioning of vertices which causes
jagged edges of the globe when the positions of the vertices exceeds sub-
pixel precision. When moving the camera, the discrete positioning of the
vertices appears to jitter due to the fact that they are transformed to camera
space with limited precision.

Cozzi and Ring propose several different solutions to this problem which
include rendering “relative to center”, “CPU - relative to eye”, “GPU - rela-
tive to eye” and “GPU - relative to eye - FUN90” [2].

Z-Fighting

Another well known issue related to precision in rendering of highly detailed
objects with a large range of possible distances to the camera is z-fighting. Z-
fighting appears as triangles or fragments flipping between being positioned

32

Figure 2.26: Jupiter’s moon Europa rendered with single precision floating
point operations. The precision errors in the placement of the vertices is
apparent as jagged edges even at a distance far from the globe.

in front of or behind each other. Normally the issue appears when it is
undecidable what relative depth two objects have, see figure 2.27. When
dealing with large distances, undecidable depths can appear for objects such
as terrains with bigger relative depths.

Figure 2.27: Z-fighting as fragments flip between being behind or in front of
each other

The problem is due to the inverse relationship that OpenGL implicitly
puts on the depth buffer when the perspective division is performed together
with the change in precision in the size of the floating point numbers. This
causes redundant precision close to the camera and increasingly lower preci-
sion for coordinates with big depth values [2].

The problem is already handled in OpenSpace with the use of a linear
depth buffer. The depth buffer value is changed by explicitly setting the
value of gl_FragDepth in all fragment shaders. The value is simply set to
the z-coordinate in camera space negated and normalized to fit all distances
within the observable Universe.

A negative aspect about setting the value of gl_FragDepth explicitly
is that early depth testing is not possible. This is OpenGL’s method of
discarding fragments before the fragment shader has been invoked. Not per-
forming early depth testing leads to lower frame rates if the fragment shader
is heavy. Kemen discussed the implications of setting gl_FragDepth explic-

33

itly and concluded that for regular fragment processing, the change in frame
rate was not significant for the Outerra software [41].

Other previously proposed methods for handling depth buffer issues in-
clude using multiple view frustums and complementary depth buffering [2].

2.6 Caching

Efficient caching of data is crucial in out-of-core, real time data visualiza-
tion applications. Since the data sets dealt with often can be measured in
terabytes or petabytes, caching is most efficient if done in multiple stages.

2.6.1 Multi Stage Texture Caching

There are six levels of caching important to take into consideration for globe
rendering softwares. These are:

1. Local GPU texture memory

2. Local RAM

3. Local drive memory

4. Local server

5. Remote server

When implementing a globe rendering system, the local RAM memory
caching is of most interest and needs to be implemented explicitly.

2.6.2 Cache Replacement Policies

There are multiple different cache replacement policies, each used for different
purposes. Some common policies are: First-In-First-Out, Last-In-First-Out,
Least-Recently-Used, Most-Recently-Used, Least-Frequently-Used,
Most-Frequently-Used.

When it comes to caching of texture tiles used for globe rendering, the
most reasonable policy gets rid of the tiles that have not been used after a
significant amount of requests in favor of more recently used ones. Therefore
the Least-Recently-Used (LRU) cache replacement policy is typically used
[2, p. 386].

34

LRU Caching

The LRU cache is filled up as new entries are requested. When the cache is
full, the least recently used entry will be thrown away when a new entry is
to be added. This is implemented with a hash map and a doubly linked list.
The hash map maps a unique resource identifier for an entry to a node in
the list, which in turn stores the entry. Every time an entry is accessed from
the cache, the node storing that entry is placed first in the list. This scheme
ensures the least recently used entry will always be located in the back of the
list so that it can be thrown out when the cache is full, see figure 2.28.

→

Figure 2.28: Inserting an entry in a LRU cache.

35

Chapter 3

Implementation

The virtual globe rendering system was implemented as a separate module,
programmed in C++ for OpenSpace which, if desired, can be opted out
when building the software. The implementation defines a namespace with
all the necessary data structures, classes and functionality specifically related
to globe rendering. The top level class RenderableGlobe with its necessary
components is illustrated as a UML diagram in figure 3.1.

Chunked LOD

Globe

Chunk Tree

Layer

Manager

Chunk

Renderer

Chunk Level

Evaluator
Chunk Culler

0..m 0..m 1

1

1

1

Renderable

Globe

Ellipsoid

11

Figure 3.1: Overviewing class diagram of RenderableGlobe and its related
classes.

The chunked LOD approach implemented is a slightly modified version of
what Cozzi and Ring[2, p. 445] uses. The globe is tessellated as an ellipsoid
with a geometrical grid using geodetic map projection.

36

3.1 Reference Ellipsoid

The Ellipsoid class was implemented to handle all geographic related calcu-
lations. These calculations include conversions between geodetic and Carte-
sian coordinates and different kinds of projections onto the ellipsoid surface.
These calculations are sped up by internal caching of a range of pre-calculated
values. Cozzi and Ring provide a complete reference on the implementation
[2, p. 17].

The Ellipsoid uses several geographically related classes, which were used
in multiple places within the implementation. These are:

1. Angle - Handles angle related arithmetic, normalization and unit ab-
straction (degrees and radians)

2. Geodetic2 - Represents a 2D geodetic coordinate (latitude, longitude)

3. Geodetic3 - Represents a 3D geodetic coordinate (latitude, longitude,
altitude)

4. GeodeticPatch - Represents a rectangular region in geodetic space

3.2 Chunked LOD

The base of the chunked LOD algorithm revolves around the self updating
chunk tree. The chunk tree is a data structure built up of ChunkNodes
which have the ability to split or merge dynamically. Besides storing four
ChunkNode children and a reference to its ChunkedLodGlobe owner, each
ChunkNode stores a Chunk.

3.2.1 Chunks

As opposed to the definition of chunks in the background section 2.4.1, this
implementation of chunks is very lightweight - it does not store any texture
or triangle mesh data. Instead, it stores the information needed to query
texture tiles from local in-memory caches. In the implementation suggested
by Cozzi and Ring, terrain triangle meshes are stored in each chunk. In
the case of this implementation however, all terrain is rendered using height
mapped vertex grids. Thus there is no need for each chunk to store their own
vertex arrays. Instead they can simply share one single instance of a vertex
grid within a whole chunk tree. This means that vertices need to be offset by
height mapping on the GPU which makes it possibly to dynamically change

37

height datasets that does not require pre processing before they can be used
for rendering.

The most important part of the chunked LOD algorithm is the ability to
dynamically select chunk nodes to split or merge. This is done by evaluating
all the leaf nodes of the chunk tree. Chunks that are cullable will indicate
that they can be merged by their chunk parent node. Chunks that cannot
be culled indicate whether they want be split or merged based on a chunk
selection algorithm. If all child nodes to a common chunk parent indicate
they can be merged, the parent will merge its children. If any chunk reports
it want to be split, its chunk node will initialize four new children within the
chunk tree.

3.2.2 Chunk Selection

The chunk tree is automatically reshaped depending on the virtual camera.
Three different approaches for calculating the error metric were implemented.
By letting the user dynamically adjust a LOD scale factor, performance can
be weighted against detail level.

By Distance

Letting the error depend on the distance between the closest point on the
chunk and the camera d as in Equation 3.1, will lead to more or less constant
size of the chunks in screen space.

e = l − log2(
s

d
), (3.1)

where e is the error, l is the current level of the chunk, s is a LOD scaling
factor and d is the distance between the closest point of the chunk and the
camera. Using this distance as an error metric leads to bigger chunks farther
from the camera where less detail is needed.

By Projected Area

Another error metric is the area that the chunk takes up on the screen. The
bigger the area, the bigger the error.

The error must not be dependent of the direction of the camera. This is
because a chunk rendered on a multi screen display, such as a dome, should
not have different errors between two or more screens which might lead to
different levels and tearing between screens. Therefore the chunk is projected
on a unit sphere and not a view plane which would lead to view direction
dependent error metrics.

38

Figure 3.2: Triangle with the area 1/8 of the chunk projected onto a unit
sphere. The area is used to approximate the solid angle of the chunk used as
an error metric when selecting chunks to render

The projected area is a solid angle approximated by extracting three
points on the chunk and projecting them on a unit sphere centered in the
camera position. The three points define the closest of the four center trian-
gles on the chunk, see figure 3.2. It is important that the triangle chosen for
approximating the projected area can never have two vertices on the same
upper or lower most edge. Such triangles (colored gray in figure 3.2) may
collapse down to a line and hence have zero area for chunks at the poles, thus
cannot be used to approximate the area of the full chunk.

The actual approximated solid angle is the projected triangle area mul-
tiplied by eight to accommodate a full chunk. This area is then subtracted
by a constant value and scaled by a LOD scale factor to give similar LOD
scaling as the distance dependent chunk selection.

3.2.3 Chunk Tree Growth Limitation

The chunk selection algorithms described above determine a suitable level of
detail based on the camera. This causes chunks that have too large of an
error to split. However, splitting a chunk will not result in higher level of
detail unless the corresponding higher tile data (textures, heightmaps, etc)
is also currently available for rendering. Therefore, the growth of the chunk
tree is limited by checking if there is any tile data there in the first place.
This is useful in two scenarios:

1. Rendering of sparse map datasets which contain geographical regions
where there are no data

2. Rendering of map datasets which are queried from remote servers; there
will always be some delay where the queried map data is not yet avail-
able

39

By enabling limiting the chunk tree growth in these two scenarios, un-
necessary chunk rendering calls can be avoided.

3.2.4 Chunk Culling

Given a chunk tree where the level of detail is selected based dynamically
based on the camera, each chunk is then tested whether they are visible to
the camera. Chunks that are not visible are said to be “cullable”, and does
not need to be rendered. The two chunk culling algorithms implemented are
Frustum Culling and Horizon Culling. They both rely on - and have access
to - the minimum and maximum values of the chunk’s currently active height
maps.

Frustum Culling

Frustum culling is implemented by first calculating a convex bounding poly-
hedron for the chunk to be tested. The bounding volume is calculated on
the fly and takes into account any enabled height maps used to displace the
vertices, making sure it fully encapsulates the displaced chunk vertices. The
polyhedron is built up of eight vertices which are transformed to normalized
device coordinates (NDC) using the view-projection matrix of the camera
followed by perspective division. Once in NDC, an axis aligned bounding
box (AABB) for the vertices is extracted. This AABB can then be tested
against the screen bounds to determine if the chunk is outside the camera’s
field of view and thus is cullable. This is illustrated in figure 3.3.

Chunk
Model space

Bounding polyhedron
Model space

Bounding polyhedron
NDC

Screen bounds
NDC

AABB
NDC

Inside? Yes:

Not cullable

Figure 3.3: Frustum culling algorithm. This chunk cannot be frustum culled.

Horizon Culling

Given a camera position, an object in position ~p with a bounding radius
r on the surface of the globe, it can be determined whether the object is
completely hidden behind the globe’s horizon or not. The calculations are
simplified by approximating the globe as a sphere using the minimum radius

40

rg of its ellipsoid. Using the minimum radius and not a bigger number ensures
that false occluding (chunks marked as invisible actually being visible) is not
possible [2, p. 393]. The minimum allowed distance l to the object can be
calculated as the distance to the horizon lh added to the minimum allowed
distance to the object from the horizon lm. See figure 3.4. Once the minimum
allowed distance is calculated it can be compared to the actual distance to
the object to determine if it is cullable or not.

lh

lm

rrg

~p

Figure 3.4: Horizon culling is performed by comparing the length lh +lm with
the actual distance between the camera position and the object at position
~p.

When culling chunks, the closest position on the chunk is used as the
position ~p and the bounding height value as r.

3.3 Reading and Tiling Image Data

Fetching the right texture and preparing it for rendering onto chunks is a
fairly complicated process. Before digging into the details of this process,
there are three concepts that need to be established, as they will be referred
to throughout the description of the texture pipeline. These are:

1. TileIndex - A tuple of three integers (level, x, y) indexing a specific
map region on the globe.

2. TileStatus - An enumeration value indicating whether the Tile is
“OK”, “Unavailable”, “Out of Range” or whether reading the pixel
data triggered an “IO Error”. Tiles that have the status “OK” are
uploaded to the GPU and can be used for rendering.

41

3. RawTile - A texture carved out to fit the geographical region of a
specific chunk, along with meta data. Each RawTile is associated with
a TileIndex and has a TileStatus. The RawTile class is guarantueed
to be thread safe.

4. Tile - Like a RawTile, but the texture data is uploaded to the GPU
and ready to use for rendering (unless it has a status not equal to
“OK”). As opposed to RawTiles, the Tile class rely on an OpenGL
context and thus is not thread safe.

All chunk height and texture data are represented using Tiles. Tiles
are created on the client side (i.e. in OpenSpace) on the fly when they are
needed. As the pixel data may need to be read from disk or even requested
from remote servers, the whole tile preparation pipeline was implemented to
be executed on separate threads in order to avoid blocking of the rendering
thread with image data reads.

During the iterative process of developing the texture tile pipeline, three
layers of abstraction were introduced in order to deal with the fairly high
complexity. See table 3.1.

Table 3.1: Abstraction layers used in the texture data pipeline

Layer Component Responsibility Input –> Output

3 AsyncT ileDataset Async RawTile fetching TileIndex –> RawTile
2 TileDataset Tiling, georeferencing, TileIndex –> RawTile

preprocessing
1 GDAL Image formats, I/O Operations, pixel region –> pixel data

georeferencing

The subsequent sections of this chapter will cover each abstraction layer
in more detail, starting from the bottom and going up the stack.

3.3.1 GDAL

Geospatial Data Abstraction Library (GDAL) is an open source library pro-
viding a uniform interface for reading, manipulating and writing geospatial
data in the form of raster and vector data models [42]. It provides an in-
terface allowing client code to specify pixel regions within a dataset to read
from, independent of the underlying image format. Reading pixel data using
the GDAL requires a set of parameters listed below and illustrated in figure
3.5:

42

Figure 3.5: The required GDAL RasterIO parameters.

1. A map overview (also known as mip map) to read pixel data from

2. A pixel region within that map overview to read pixels from

3. The raster band(s) (e.g. color channels) to read

4. A pointer to sufficient user allocated memory where GDAL can write
the output of the read operation

5. The pixel region to write the output pixel data. The size of the pixel
data to be written may differ from the pixel region to read from, in
which case GDAL will resample and interpolate the pixel data auto-
matically

6. The layout (i.e. pixel spacing, raster band spacing and line spacing)

7. The data type to retrieve the pixel data in

With the given input parameters shown in figure 3.5, the resulting output
would be the pixel data of the requested image region written with the pixel
layout parameters to the provided memory block. The output is illustrated
in figure 3.6.

0xabc123

256 px

212 px

Figure 3.6: Result of GDAL raster IO.

43

The same interface can also be used to read sparse datasets. A detailed
example of how to use GDAL for reading sparse datasets such as local, geo-
referenced, image patches of high resolution can be founed in Appendix B.

GDAL also provides the coefficients of a geo-transform which defines the
mapping from raster coordinates to georeferenced coordinates. The geo-
transform can be inverted to transform a georeferenced region to raster space
when specifying the area of an image tile to read.

3.3.2 Tile Dataset

TileDatasets carves out RawTiles from GDAL datasets based on a
TileIndex. Along with the pixel data, the served RawTiles also contain
some metadata. The metadata includes an error code if the read operation
failed and some basic information about to read pixel data, such as mini-
mum and maximum pixel values. Figure 3.7 illustrates how the process from
TileIndex to RawTile is carried out. There are three gray subroutines; Get
IO description, Read image data and Calculate metadata. These subroutines
are explained below.

Tile index

Tile index

Read image data

Pixel data

Raw tile

Calculate

metadata

Tile

metadata
Error

Raw tile

Tile dataset: Read tile data

Get IO description:

1. map overview

2. read/write regions

3. add padding

IO description

GDAL: Raster IO

Figure 3.7: The tile dataset pipeline takes a tile index as input, interfaces
with GDAL and returns a raw tile

44

Get IO Description

The IO description contains all tile specific information needed to perform
a map read request using GDAL. This includes the pixel region to read and
where to store the result. The derivation of this information is summarized
in the following steps and illustrated in figure 3.8.

Figure 3.8: Overview of the calculation of an IO description.

1. Calculate a GeodeticPatch from TileIndex

2. Calculate the pixel coordinates for the patch in raster coordinate space

3. Calculate a suitable map overview

4. Transform pixel region to map overview pixel space

5. Add padding to the down scaled pixel region

6. Collect the information in an IO description object.

In the scheme in figure 3.8, step 1 is performed using equation 3.2,

φNE = 2πy/2level

θNE = 2πx/2level

side = 2π/2level,

(3.2)

where φNE and θNE are the latitude and the longitude of the north east
corner of the tile and side is the side length of the tile.

Calculating the corresponding GDAL overview is done according to equa-
tion 3.4,

Overview(level) = N − level − 1− log2(sizetile/sizemap), (3.3)

where level is given by the provided TileIndex, N is the total number
of overviews in the dataset, sizetile is a configurable constant defining the

45

preferred pixel size of a tile and sizemap is the size of the full map in pixels.
The sizes can be either along the x− or y− axis. In the implementation the
x−axis is used.

Pixel coordinates can easily be transformed across map overviews using
equation 3.4.

pn = pm × 2m−n (3.4)

Where n is the destination map overview and m is the source map
overview. This is used for downscaling the pixel region in step 4, where
n is the calculated suitable overview and m is zero (i.e. the full map).

Padding is added to the pixel region in order to perform correct interpo-
lation of pixel values across different tiles later during rendering. However,
this may cause the pixel region to extend outside the map region. Therefore
the last finalize step also handles wrapping of the pixel region before return-
ing the final IO description. The wrapping used is a CPU implementation of
GL_REPEAT .

Tile Meta Data

As mentioned, TileDatasets can be configured to calculate some metadata
on the fly based on the pixel data that has been read. The metadata includes
minimum and maximum pixel values within the pixel data and whether or
not the pixel data contains missing-data values. Having access to minimum
and maximum values for height layer tiles is required for the culling to be
performed correctly since the cullers rely on having bounding boxes for the
chunks. The meta data is collected by explicitly looping through all the pixel
values on the client side.

Summary

To summarize, the implementation of TileDataset allow reading pixel data
from a GDAL dataset corresponding to a specific TileIndex, along with
metadata unless opted out. The RawTiles that are served are padded in
order to perform smooth pixel blending between different tiles. RawTiles
are not available for rendering since the data is not yet on the GPU.

3.3.3 Async Tile Dataset

AsyncT ileDatasets utilize a shared thread pool and own a TileDataset. It
defines a concurrent job posting interface for concurrent reads within the
TileDataset. It has two important functionalities: 1) enqueing tile read jobs

46

and 2) collect finished RawTiles. Reading RawTiles on separate threads
ensures that the render thread will not be delayed by image data requests,
see figure 3.9.

ThreadPool → Read
from TileDataset

Tile dataset

Currently being

downloaded?
Concurrent queue:

Append element

Figure 3.9: Asynchronous reading of Raw tiles can be performed on separate
threads. When the tile reading job is finished the raw tile will be appended
to a concurrent queue.

RawTile
RawTile

Async ile dataset: Get raw iles

Figure 3.10: Retrieving finished RawTiles.

The AsyncT ileDataset internally keeps track of what tile indices it has
enqueued and what tile pixel regions are currently being read. If a pixel
region for a specific tile index is already enqueued or currently being read,
the request is ignored. Figure 3.10 shows how raw tiles can be fetched once
they are finished and enqueued.

47

3.4 Providing Tiles

Tiles have three properties: a texture, metadata and a status. The status is
used to report any type of problem with the tile. Tiles that have the status
“OK” are uploaded to the GPU and can be used for rendering.

Tiles are provided for rendering through TileProviders. They define an
interface that allow accessing tiles and meta data about the tiles. There are
different types of tile providers, but they must all implement the following
functionality:

• GetTile(TileIndex) - access the tile at the provided TileIndex

• GetDefaultTile() - returns a default Tile with status “OK”

• GetDepthTransform() - pixel value scale factor (for example converting
height map values to meters)

• GetMaxLevel() - the maximum tile level supported by this provider)

• GetNoDataValue() - get value that should be interpreted as “no data”

• CheckTileStatus(TileIndex) - check TileStatus with no side effects

• Update() - called once per frame, allow for internal updates

• Reset() - full reset of internal state

Tile provider: Get tile

Tile index Tile

Figure 3.11: Tile provider interface for accessing tiles

The most important functionality is the GetTile ability, which is used
by client code to access the tiles. As tile providers may provide tiles of any
status, the user of the tile provider is responsible to always check the status
of the requested tile before using the tile.

Several implementations of the tile provider interface were developed.
They are all described below.

48

3.4.1 Caching Tile Provider

The CachingT ileProvider uses an AsyncT ileDataset to read RawTiles as
soon as client code tries to access a specific tile. It internally polls the
AsyncT ileDataset every update for finished raw tiles. The CachingT ileProvider
converts the raw tiles into tiles. This is done in the initialization step which
is part of the update method that is illustrated in figure 3.13. If no errors of
the raw tile are reported, the tile gets the status “OK” and its texture data
gets uploaded to the GPU. The tile also gets added to the in-memory “Least
Recently Used”-cache. The functionality of accessing tiles is illustrated in
figure 3.12.

The uploading of texture data to the GPU needs to be on the rendering
thread since there is where the OpenGL context resides. Tiles with data
uploaded to texture memory will enable it for use in rendering of a chunk.

Figure 3.12: Tiles are either provided from cache or enqueued in an asyn-
chronous tile dataset if it is not available

The functionality for internally updating the tile cache is illustrated in
figure 3.13.

49

Caching tile provider: Update

Async tile dataset: Get raw tiles

RawTile
Raw tile

Get raw tiles

Tile
Tile

Initialize Tile

Update
Insert in cache

Figure 3.13: The tile cache is updated once per frame

Figure 3.14 demonstrates a typical scenario where a specific tile of index
(3, 4, 2) is requested within a sequence of render calls. The first requesting call
to that tile will spawn a worker thread in the AsynchT ileDataset. As soon
as the Tile is initialized (uploaded to the GPU) and inserted in the cache,
it will be accessible on the rendering thread. If the tile is not yet available
the CachingT ileProvider will report that so that the calling function can
continue without the use of that specific Tile.

Time

Worker Thread

Main Thread

Initialize Tile

= Tile Unavailable

= Tile OK

getT
ile

({
3, 4

, 2
})

getT
ile

({
3, 4

, 2
})

getT
ile

({
3, 4

, 2
})

getT
ile

({
3, 4

, 2
})

getT
ile

({
3, 4

, 2
})

Read and initialize Raw tile

Figure 3.14: Tiles are fetched on demand. The first time a tile is requested,
the asynchronous tile dataset will request it on a worker thread. As soon as
the tile has been initialized it will have the status “OK” and can be used for
rendering

3.4.2 Temporal Tile Provider

In order to incorporate time-resolved map datasets into the rendering scheme,
a tile provider for this specific purpose was implemented.

The TemporalT ileProvider is instantiated with a template URI con-
taining a time placeholder. Information about the supported time range,

50

time resolution and expected timestamp format to be used in the template
URI is also passed during instantiation. In Listing 3.1, all tags starting with
OpenSpace are used to configure information used to instantiate the temporal
dataset. The tag GDAL_WMS contains a functional GDAL WMS dataset spec-
ification. When requesting the URLs for the dataset, ${OpenSpaceTimeId}

will be replaced with the date and time in the specified format.

Listing 3.1: Temporal WMS dataset specification
<OpenSpaceTemporalGDALDataset >

<OpenSpaceTimeStart >2015 -11 -24 </ OpenSpaceTimeStart >

<OpenSpaceTimeEnd ></ OpenSpaceTimeEnd >

<OpenSpaceTimeResolution >1d</ OpenSpaceTimeResolution >

<OpenSpaceTimeIdFormat >YYYY -MM -DD </ OpenSpaceTimeIdFormat >

<GDAL_WMS >

<Service name="TMS">

<ServerUrl >

http: // datasetURL /${ OpenSpaceTimeId }/${z}/${y}/${x}. jpg

</ ServerUrl >

</ Service >

...

</ GDAL_WMS >

</ OpenSpaceTemporalGDALDataset >

At runtime, the TemporalT ileProvider checks the global simulation time,
quantizes that time with respect to the provided time resolution and lazily
instantiates new CachingT ileProviders per timeframe within the temporal
dataset. An schematic illustration is given in figure 3.15.

Temporal ile provider: Get ile

TileProviderTileProviderTileProviderCaching ile provider TileProviderTileProviderTileProviderCaching ile provider

2015-11-12 2016-06-01
Current ime

Tile index Tile

Tile
Tile

index

Figure 3.15: Each temporal snapshot is internally represented by a caching
tile provider

3.4.3 Single Image Tile Provider

This is a very simple implementation of the tile provider interface which
only serves the same tile for every tile index. This tile provider was used for

51

testing and debugging alignment and padding between tiles, see figure 3.16.

Figure 3.16: Serving single tiles is useful for debugging chunk and texture
alignment

3.4.4 Text Tile Provider

The ability to serve tiles with text rendered on the fly was implemented as
a general debugging utility. The tiles are generated on demand by rendering
text to textures and cached using the same LRU caching mechanism as the
CachingT ileProvider.

Tile

cached?

Figure 3.17: Serving tiles with custom text rendered on them can be used as
size references or providing other information. The tile provider is internally
holding a LRU cache for initialized tiles

Two different types of TextT ileProviders were implemented.
TileIndexT ileProvider serves tiles where each tile has its tile index rendered
onto it and SizeReferenceT ileProvider uses the globe’s reference ellipsoid
to render a size reference in meters or kilometers onto its tiles.

52

3.5 Mapping Tiles onto Chunks

In the implementation of chunks suggested by Cozzi and Ring [2], chunks
store the data they need for rendering by themselves. That means that as
soon as a chunk has been fully initialized, it has everything it needs to be
rendered. However, when dealing with multiple map datasets potentially
residing on distant servers, there is no guarantee that all the tiles needed for
a chunk to be rendered are available.

When an accessed Tile does not have the status “OK”, it can not be
used for rendering. The second best thing to try is to check the parent of the
tile. A parent tile is guaranteed to always cover a larger geodetic map region
that includes its children’s subregions, but with lower number of pixels per
geodetic degree. Figure 3.18 demonstrates this with a simple example.

(a) Requested tile (b) Requested tile’s re-
gion shown in its parent
tile

Figure 3.18: Only the highlighted subset of the parent tile is used for ren-
dering the chunk. Figure adapted from [13]

In figure 3.18, it is realized that in order to use a parent tile for rendering,
the texture coordinates used to sample the parent tile needs to be adjusted
to represent the same geographic region. This shows the need of a higher
level concept than just Tiles, which leads to the introduction of ChunkT iles.

3.5.1 Chunk Tiles

A ChunkT ile represents a Tile that corresponds to a specific Chunk. It
stores a Tile which is guaranteed to have the status “OK” along with a
transform defined by a scaling and translation component. The transform is
used to map texture coordinates of the chunk into its corresponding geodetic
region within the tile.

53

The algorithm used for selecting the highest resolution ChunkT ile from
a tile provider is described by the pseudo code in Listing 3.2.

Listing 3.2: Selecting optimal Chunk Tiles
ChunkTile TileSelector :: getChunkTile (TileProvider * tp , TileIndex ti){

TileUvTransform uvTransform ;

uvTransform . uvOffset = glm :: vec2 (0, 0);

uvTransform . uvScale = glm :: vec2 (1, 1);

while (ti. level > 1) {

Tile tile = tp -> getTile (ti);

if (tile. status == Tile :: Status :: OK) {

return { tile , uvTransform };

}

else {

ascendToParent (ti , uvTransform);

}

}

uvTransform . uvOffset = glm :: vec2 (0, 0);

uvTransform . uvScale = glm :: vec2 (1, 1);

return { tp -> getDefaultTile () , uvTransform };

}

The subroutine ascendToParent returns an updated transform which
maps texture coordinates to the same geodetic region within the next parent
tile. The routine is described in Listing 3.3.

Listing 3.3: Ascend to parent
void TileSelector :: ascendToParent (TileIndex & tileIndex , TileUvTransform &

uv) {

uv. uvOffset *= 0.5;

uv. uvScale *= 0.5;

if (tileIndex . isEastChild ()) {

uv. uvOffset .x += 0.5;

}

// In OpenGL , positive y direction is up

if (tileIndex . isNorthChild ()) {

uv. uvOffset .y += 0.5;

}

tileIndex . toParent ();

}

As opposed to regular tiles, chunk tiles can always be used for rendering
since they by definition always have the status “OK”.

3.5.2 Chunk Tile Pile

A ChunkT ileP ile represents a range of ChunkT iles across multiple mip lev-
els. They contain the information needed to perform the LOD switching later
described under section 3.7.5. Retrieving a ChunkT ileP ile simply requires

54

a tile index of the highest desired mip level (highest LOD) and the number
of desired ChunkT iles in the pile as described in Listing 3.4.

Listing 3.4: Instantiating a Chunk Tile Pile
ChunkTilePile TileSelector :: getChunkTilePile (TileProvider * tp , TileIndex

ti , int n){

ChunkTilePile chunkTilePile ;

for (int i = 0; i < n; ++i){

chunkTilePile . push_back (getChunkTile (tp , ti));

ti. toParent ();

}

return chunkTilePile ;

}

As an example: Assuming that the texture data is available in local
memory, invoking the getChunkTilePile method with index {x : 2240, y :
4824, level : 13} and a chunk tile pile size 3, would return the ChunkT ileP ile
represented in figure 3.19.

(a) Tile (b) Parent 1 (c) Parent 2

Figure 3.19: The image data of a given chunk tile pile. Only the highlighted
subset of the parent tiles are used for rendering the chunk. Figure from [28]

As chunk tiles are guaranteed to be good for rendering on the GPU (since
their tiles are guaranteed to have the status “OK”), all ChunkT ileP iles are
guaranteed to be good for rendering as well.

3.6 Managing Multiple Data Sources

The LayerManager maintains and organizes different types of texture data
sources into groups. This is required as different types of texture datasets are
used for different purposes and rendered in different ways. The LayerManager
owns seven LayerGroups; these are:

55

1. HeightLayers

2. ColorLayers

3. ColorOverlays

4. GrayScaleLayers

5. GrayScaleOverlays

6. NightLayers

7. WaterMasks

3.6.1 Layers

Much like in image editing softwares, a layer in this context represents a
raster of pixels, which among other internally ordered raster of pixels, are
used to produce a final result. A Layer consists of three things:

1. A TileProvider - Used for accessing tiles of texture data.

2. A collection of render settings for real time image processing. The pa-
rameters implemented at this stage are gamma, multiplier and opacity.

3. A simple boolean property which specifies whether the layer is enabled
or disabled. Disabled layers are not used in rendering.

Layers allow for retrieving of ChunkT ileP iles, as described in section
3.5.2. The class hierarchy and data flow is illustrated in figure 3.20.

3.6.2 Layers on the GPU

The data hierarchy defined by LayerManager can almost be reproduced on
the GPU by using GLSL in a near object-oriented approach. In order to
handle the data mapping between the CPU and GPU, a CPU representation
of the GPU data hiearchy was implemented. This allows for easily updating
the values of uniform variables and map uniform names to uniform locations.

56

1

1 1 1

1

1 1 1 1

11

111

1

Tile (OK)

0..m

0..m

0..m

vec2:

Translaion
vec2: Scaling

float:
Translaion

float: Scaling

float:
Gamma

float:
Opacity

float:
Muliplier

Layer Manager

Layer Group

Layer

Layer Seings Chunk Tile Pile

Chunk Tile

UV Transform Depth Transform

boolean:
Blending

Tile Providerboolean:
Enabled

Provides for each Chunk

Figure 3.20: UML diagram of the LayerManager and its related classes

CPU to GPU Data Mapping

There are some key differences between the LayerManager data structure
on the CPU and its corresponding GPU-synchronized representation -
GPULayerManager. These are:

• The GPU representation does not store any of the actual Layer data
- only the uniform locations within a shader program so that it knows
where to upload the layer data to the GPU.

• Render calls are done on a per chunk basis. This means that all texture
data to be used within a single render call is contained in a single
ChunkT ileP ile for each Layer. Thus, the provides-relation between
Layer and ChunkT ileP ile in figure 3.20 simply becomes a has-relation
between a GPULayer and a GPUChunkT ileP ile.

• Layers that are disabled are not rendered and consequently not up-
loaded to the GPU. This means that all layers on the GPU are enabled,
thus they do not need to store that information.

Incorporating these few differences yields a similar class hierarchy, as
illustrated in figure 3.21.

57

Figure 3.21: UML structure for corresponding GPU-mapped hierarchy. The
class GPUData<T> maintains an OpenGL uniform location

58

The leaf classes within the class hierarchy store one uniform location
each and represent one GLSL uniform value. The declaration of the layer
uniforms within the shader code is defined so that it matches the exact same
hierarchy. This is implemented by mapping C++ classes to GLSL structs
and representing one-to-many relationships as structs with either a range of
conformally named fields or plain GLSL arrays.

Updating the GPU Data

With this 1:1 data mapping between the CPU and GPU, all the GPU-prefixed
classes were given two responsibilities.

1. Bind its uniform locations to GLSL variable names within a provided
shader program

2. Set its uniform values within a provided shader program. That is, a
GPUChunkT ile should be able to set its uniform values from a regular
ChunkT ile

The leaf classes automatically takes care of both binding its uniform lo-
cation to specific GLSL variables and setting their uniform values. The
compound GPU-prefixed classes (non leaf classes) more or less simply prop-
agates the method calls to all its dependents. When binding an object to a
variable name, the GLSL variable identifiers are built up successively during
the propagation down to the leaf classes. GPULayer is used as an example
in Listing 3.5.

Listing 3.5: Bind a GPU Layer to a Layer on the CPU
void GPULayer :: bind(ProgramObject * p, std :: string nameBase , int pileSize)

{

this -> gpuChunkTilePile .bind(p, nameBase + "pile.", pileSize)

this -> gpuRenderSettings .bind(p, nameBase + " settings .")

}

In Listing 3.5, it can be concluded that each layer in the GLSL code must
be a struct with a member called “pile” and a member called “settings”. An
example of a fully resolved identifier is:

" ColorLayers [0]. pile. chunkTile0 . tileUvTransform . scaling "

When setting the values, the GPU representation of the data is up-
dated based on the currently available Layer data and the update is prop-
agated down to all the leaf classes. This is exemplified using code from the
GPULayer class defined in Listing 3.6.

59

Listing 3.6: Set all GPU Layer variables from a CPU Layer
GPULayer :: setValue (ProgramObject * p, Layer & l, TileIndex ti , int n){

ChunkTilePile chunkTilePile = l. getChunkTilePile (ti , n);

this -> gpuChunkTilePile . setValue (p, chunkTilePile);

this -> gpuRenderSettings . setValue (p, l. renderSettings ());

}

3.7 Chunk Rendering

Rendering of chunks uses both vertex and fragment shaders. As the globe
geometry is always represented as height maps, the same vertex geometry -
a uniform grid - is used as a basis for rendering all chunks.

3.7.1 Grid

The vertex grid used for rendering a chunk has square size. It is defined by
the number of segments N along its sides, which is used to build up a two
dimensional array of vertex coordinates. These vertex coordinates can be
used both for texture fetching and as interpolation parameters in an inverse
geographic projection to place each vertex in 3D space. The grid also contains
the extra strip of vertices defining the skirt of the chunk. Figure 3.22 shows
how a the skirt region have uv-coordinate values less than 0 or greater than
1 in either the u or the v dimension.

0.0 1.0

0.0

1.0

u

v

1

2

3

N

1 2 3 N

Figure 3.22: Grid with skirts with a side of N = 4 segments. Green represents
the main area with texture coordinates ∈ [0, 1] and blue is the skirt of the
grid.

60

3.7.2 Vertex Pipeline

Rendering the grid includes performing displacement mapping of the vertices
based on active heightmaps as well as offsetting skirt vertices downwards.
Two different methods for rendering the vertex grid were implemented. The
first method performs these operations in model space, whereas the second
one performs these operations in camera space.

Model Space Rendering

The vertices of the grid is transformed into geographic space on the GPU
using a transform derived from the chunk’s tile index. From geographic
space, an inverse projection transform is applied to place the vertices in
the Chunk’s Cartesian model space. From this space, the vertices are then
displaced according to active height maps. This approach yields a limited
precision of the vertices as they are defined relative to the center of the globe.
However, it provides high accuracy as the vertices are positioned exactly on
the globe in geodetic coordinates. Figure 3.23 illustrates inverse projection
transform.

x
y
z

 = P −1(φ, θ)→

Figure 3.23: Model space rendering of chunks is performed with a mapping
of vertices from geodetic coordinates to Cartesian coordinates.

Figure 3.24 shows the pipeline for rendering a chunk using the model
space method.

Figure 3.24: Vertex pipeline for model space rendering. Variables on the
CPU are defined in double precision and cast to single precision before being
uploaded to the GPU.

61

Camera Space Rendering

Camera space rendering is performed by transforming the corner points of the
chunk to camera space using double precision arithmetics. Once in camera
space, the points are cast to single precision and uploaded to the GPU.
All the other vertices within the grid is then positioned on the GPU using
bilinear interpolation of the corner points in camera space. The bilinnear
interpolation means the grid will be rendered without curvature. However,
having the points in camera space solves the proposed precision issues since
the precision will increase when the points are closer to the camera. This
concept is illustrated in figure 3.25 where the vertex position vector precision
increases as vertices are closer to the camera.

Figure 3.25: Interpolating vertex positions in camera space leads to high pre-
cision in the representation of vertex positions close to the camera compared
to positions defined in model space.

Figure 3.26 shows a flowchart of the local vertex rendering pipeline.

Figure 3.26: Vertex pipeline for camera space rendering. Variables on the
CPU are defined in double precision and cast to single precision before being
uploaded to the GPU

62

Combination

Both methods are used within the rendering system. Using the camera space
rendering with bilinear interpolation method instead of model space render-
ing is done for chunks at level 10 and higher. This means that chunks with
a latitudinal and longitudinal curvature of 360/210 ≃ 0.3516 degrees and less
are rendered as flat surfaces.

3.7.3 Fragment Pipeline

The purpose of layered texture rendering is to provide the user an ability to
toggle different kinds of layers for rendering a chunk. For each fragment, the
final color is calculated by using the active layer groups. This is done using
the following step in the fragment shader which is the same for the camera
space rendered chunks as it is for the model space rendered chunks:

1. For all ColorLayers: Sample RGB, apply layer settings and update
fragment RGBA using alpha blending

2. For all GrayscaleLayers: Sample the grayscale value R, apply layer
settings and update fragment V in color space HSV using alpha blend-
ing

3. For all GrayscaleOverlays: Sample grayscale value R and A, apply
layer settings and update fragment RGBA using alpha blending

4. For all WaterMasks: Sample A, apply layer settings and add A as a
specularity component for the fragment

5. For all NightTextures: Sample RGB, apply layer settings and up-
date fragment RGBA using alpha blending in shaded regions of the
globe

6. Perform shading by darkening shaded regions

7. Add simple atmosphere color to RGB

8. For all ColorOverlays: Sample RGBA, apply layer settings and up-
date fragment RGBA using alpha blending

All of these steps are optional and can be toggled by activating or de-
activating layers or specifying whether or not to perform shading or use
atmosphere for rendering. Sampling the color from a layer group is done by
looping through all layers in that group, see Listing 3.7. Listing 3.8 and 3.9

63

shows how layer weights and texture transforms for chunk tile piles are used
for sampling of the tile textures. Layer settings is performed for all raster
bands within all layers. The application of layer settings is shown in Listing
3.10.

Listing 3.7: Setting color for a given layer group. Example using ColorLayers

for i in 0..#{ lastLayerIndexColorLayers } {

vec4 colorSample = getTexVal (ColorLayers [#{i}]. pile ,

levelWeights , uv);

colorSample = performLayerSettings (colorSample ,

ColorLayers [#{i}]. settings);

color = blendOver (color , colorSample); // Alpha blending

}

endfor

Listing 3.8: Getting texture value by blending a chunk tile pile
vec4 getTexVal (ChunkTilePile chunkTilePile , LevelWeights w, vec2 uv){

return w.w1 * getTexVal (chunkTilePile . chunkTile0 , uv) +

w.w2 * getTexVal (chunkTilePile . chunkTile1 , uv) +

w.w3 * getTexVal (chunkTilePile . chunkTile2 , uv);

}

Listing 3.9: Using texture transform and sampling a texture
vec4 getTexVal (ChunkTile chunkTile , vec2 tileUV){

vec2 samplePosition = TileUVToTextureSamplePosition (chunkTile , tileUV);

vec4 texVal = texture (chunkTile . textureSampler , samplePosition);

return texVal ;

}

Listing 3.10: Perform layer settings
float performLayerSettings (float currentValue , const LayerSettings

settings) {

float newValue = currentValue ;

newValue = sign(newValue) * pow(abs(newValue), settings . gamma);

newValue = newValue * settings . multiplier ;

newValue = newValue * settings . opacity ;

return newValue ;

}

3.7.4 Dynamic Shader Programs

The ability to dynamically toggle layers with dynamic blending requires mul-
tiple sampling of textures in the fragment shaders. To avoid unnecessary pro-
cessing when not all layers are in use there is a need to dynamically recompile
the shader programs as layers are toggled. We use the GLSL preprocessor
in the General Helpful Open Utility Library (GHOUL) [43] to preprocess all
shader programs when the number of layers in use change.

64

Table 3.2: Data used for a layer group for preprocessing of layer shader
programs

Layer Group Preprocessing Data

Number of layers: integer
Blending enabled: boolean

Table 3.3: Data used for a renderable globe for preprocessing of layer shader
programs

Layer Shader Preprocessing Data

0..* Preprocessing data: Layer Group Preprocessing Data
0..* Key-value pairs: pair of strings

We define a layer shader program to be a GLSL program object using
vertex and fragment shading. Moreover, it fits the pipeline of rendering a
chunk with a specific number of layer groups and a varying number of layers
for each group.

To decide whether or not a layer shader program needs to be preprocessed
and re-compiled, the relevant Layer Shader Preprocessing Data is saved for
the layer shader program and compared to the updated preprocessing data
to determine if it has been changed by the user. Table 3.3 shows what
data is needed to preprocess layer shader programs. Key-value pairs can
be used to set properties that are used on a per-globe basis. Examples are
performShading : true or false, useAtmosphere : true or false. Letting
the preprocessor handle these properties avoids the need of uniform variable
uploading and GLSL if-statements. The preprocessor also handles unrolling
of for-loops which go through all layers in a group, see Listing 3.7.

3.7.5 LOD Switching

Instead of the time based switching routine proposed by Cozzi and Ring [2],
we perform a distance based switching which works on a per fragment ba-
sis for textures and on a per vertex basis for height maps. The method is
implemented in the vertex and fragment shaders and uses linear interpola-
tion between levels. The blending technique uses the concept of Chunk Tile
Piles as seen in section 3.5.2. A Chunk Tile Pile contains three chunk tiles
of different level to achieve level blending which is used to avoid popping
artifacts.

When rendering a specific fragment of a chunk, blending between up to
three chunk levels can be used as a part of the switching in the chunked LOD

65

algorithm. Assuming that the level of Tile 0 is equal to the level of the chunk
to render and that Chunk Tile 1 and Chunk Tile 2 are 1 and 2 levels lower
respectively, three level weights can be determined based on the distance to
the fragment to achieve smooth transitions between levels. The three level
weights are based on an interpolation parameter t as in Listing 3.11.

Listing 3.11: Calculate level weights for three chunk tiles using an interpo-
lation parameter calculated based on the distance between the camera and
the fragment

LevelWeights getLevelWeights (float t){ // level interpolation parameter

LevelWeights levelWeights ;

levelWeights .w1 = clamp (1 - t, 0 , 1);

levelWeights .w2 = clamp (t, 0 , 1) - clamp (t - 1, 0 , 1);

levelWeights .w3 = clamp (t - 1, 0 , 1);

return levelWeights ;

}

The interpolation parameter t is calculated using the distance to the
camera d and the current level of the chunk l as in equation 3.5.

t = l − log2(
s

d
), (3.5)

where s is a scale factor determining how much of the higher level tile
to use in the blending. In the ideal case, the interpolation parameter should
be a value between 0 and 1. However, adjacent chunks can have a difference
in level greater than 1 which in turn leads to interpolation parameters with
larger values. This is why it is not enough to use two Chunk Tiles per Chunk
Tile Pile to guarantee no popping. Popping can also occur if the LOD scale
factor s is small enough for adjacent chunks to have even bigger difference in
level. Figure 3.27 shows how the interpolation parameter from the desired
level is used for blending between tiles of different level.

160 2 4 6 8 10 12 14
0

1

2

3

4

d = distance

t = 1

log2(s/d)
level

(a) Blending disabled

0 2 4 6 8 10 12 14 16
0

1

2

3

4
t = level - log2(s/d)

log2(s/d)
level

1 - t

d = distance

(b) Blending enabled

Figure 3.27: Blending on a per fragment basis. The level interpolation pa-
rameter t is used to calculate level weights w1 = 1 − t and w2 = t, in this
case using two chunk tiles per chunk tile pile.

66

3.8 Interaction

An interaction mode specifically for globe browsing had to be implemented
to deal with the vast scale differences and limitations of camera movements
required for browsing globes.

Representing the camera state as a three dimensional Cartesian vector
for the position and a quaternion for the rotation made it possible to achieve
interaction solving the proposed objectives. Basic linear algebra was used
on vectors such as the geodetic normal of the globe in the camera position
geodetically projected on the surface, camera position and direction as well
as the height offset of the terrain.

The horizontal movement interaction speed was set to be proportional
to the distance from the camera to the terrain surface. That way the user
can come in close and slowly hover across the detailed terrains as well as
quickly moving from one continent to the other by increasing the height to
the surface.

The camera rotation quaternion can be decomposed in to two rotations;
one directing the camera in the direction of the geodetic normal and one
directing it in the remaining view direction with a given roll. This way it is
possible to both travel across the surface and keeping the horizon angle as
well as looking around at the spot.

The camera is always pushed up above the surface of the terrain to avoid
penetrating it. The minimum height given in meters can be set together with
other parameters such as sensitivity and friction.

67

Chapter 4

Results

Two types of results are presented in this chapter: screenshots showing dif-
ferent visual aspects of the system and benchmarks focusing on the achieved
performance.

4.1 Screenshots

Screenshots from the implemented system are presented and described in
each subsection below. Figure 4.1 shows the Earth shaded using a simple
implementation of an atmosphere together with a daily image of surface
reflectance.

Figure 4.1: Shaded Earth rendered with NASA GIBS VIIRS daily image [17]

68

4.1.1 Height Mapping

Figure 4.2 shows the Earth rendered with a height dataset displacing the
chunks’ vertices according to the geometric shape of the ground.

(a) The volcano Gunung Agung on Bali.

(b) Looking south from Mount Everest

Figure 4.2: Earth rendered with ESRI World Elevation 3D height map [44].
Color layer: ESRI Imagery World 2D [28]

69

4.1.2 Water Masking

Figure 4.3 shows the Earth rendered with a water mask layer enhancing
specular contrasts between land and water.

(a) Sun’s specular reflection in the Amazon River.

(b) Sun’s specular reflection around Bali, Indonesia.

Figure 4.3: Shaded Earth using water mask texture. Color layer: ESRI
Imagery World 2D [28]

70

4.1.3 Night Layers

Figure 4.3 shows the Earth rendered with a night layer showing light from
cities, which is only rendered on the night side of the planet.

(a) Earth at night

(b) New Deli at night

Figure 4.4: Night layers are only rendered on the night side of the planet.
Night layer: NASA GIBS VIIRS Earth at night [17]

71

4.1.4 Color Overlays

To demonstrate color overlays, the three examples of figure 4.5 show how
different tile providers produce references useful for debugging or locationing.

(a) Color Overlay: tile indices (b) Color Overlay: size reference

(c) Color Overlay: reference features and reference labels [17]

Figure 4.5: Earth rendered with different color overlays used for reference.
Color layer: ESRI Imagery World 2D [28]

72

4.1.5 Grayscale Overlaying

In figure 4.6, the great canyon Valles Marineris on Mars is rendered with a
low resolution color layer combined with a higher resolution grayscale overlay.

(a) Color layer: Viking MDIM [19] (b) Grayscale layer: CTX Mosaic

(c) CTX Mosaic HSV blended on top of Viking MDIM [19]

Figure 4.6: Valles Marineris, Mars with different layers

73

4.1.6 Local Patches

Figure 4.7 shows the approach of local DTM patches in West Candor Chasma.

(a) Local Patch: CTX DTM patch (b) CTX mosaic, CTX DTM patch
and 25 cm per pixel DTM patch

(c) CTX mosaic, CTX DTM patch and HiRISE 25 cm per pixel DTM
patch closeup

Figure 4.7: Local DTM patches of West Candor Chasma, Valles Marineris,
Mars. All figures use color layer: Viking MDIM [19] and height layer: MOLA
[45].

74

4.1.7 Visualizing Scientific Parameters

Using the vast amount of datasets provided by NASA GIBS [17], several
scientific parameters measured by the Terra and Aqua satellites among others
could be visualized as a result of layered texture rendering. Three examples
are shown in figure 4.8.

(a) Ozone (measured in streaks) (b) Land temperature

(c) Sea surface temperature

Figure 4.8: Visualization of scientific parameters on the globe. All these
datasets are temporal and can be animated over time. Datasets from [17].

75

4.1.8 Visual Debugging: Bounding Volumes

Bounding polyhedra are calculated on the fly for each chunk, taking onto
consideration any currently enabled height dataset. These bounding vol-
umes are then used for by culling algorithms. Figure 4.9 shows how smaller,
more planar chunks can be encapsulated more tightly than large chunks by
polyhedron shapes of eight vertices converging to rectangular blocks for high
chunk levels.

(a) (b)

(c) (d)

Figure 4.9: Rendering the bounding polyhedra for chunks at Mars. Note
how the polyhedra start out as tetrahedra for the largest chunks in 4.9a and
converge to rectangular blocks as seen in 4.9d.

76

4.1.9 Visual Debugging: Camera Frustum

Figure 4.10 shows a camera frustum visualized and the affect of frustum
culling on chunks together with the difference in skirt length between levels.

Figure 4.10: Chunks culled outside the view frustum. The skirt length of
the chunks differ depending on the level. The figure also shows how some
chunks are rendered in model space (green edges) and some in camera space
(red edges).

77

4.2 Benchmarking

This section cover a range of benchmarks diagnosing the behavior and per-
formance of the system. The specifications for the computer used for bench-
marking is defined in table 4.1.

Table 4.1: Computer used for Benchmarking

Computer Model: MacBook Pro (15” early 2011)
Processor: 2GHz Intel Core i7

RAM: 8 GB 1333MHz DDR3 RAM
Graphics: AMD Radeon HD 6490M 256 MB

78

4.2.1 Top Down Views

The chunk rendering algorithm was evaluated for a top down view at different
distances to the ground. The settings for the evaluation are presented in
Table 4.2. The camera views for the evaluation points are shown in figure
4.11 and the results are presented in figure 4.12.

Table 4.2: Globe rendering settings for top down view benchmark

Globe: Earth
Map datasets: HeightLayers = [GCS_Elevation [44]]

ColorLayers = [ESRI Imagery World 2D [28]]
LOD Scale factor: 10.0
Chunk Selection: By distance

Culling: Frustum culling, Horizon culling
Level blending: Enabled
Camera View: Facing down, varying altitudes

(a) Earth (b) East America (c) New York City

(d) Manhattan (e) Central Park

Figure 4.11: Top down views of Earth at different altitudes

79

Earth East America NYC Manhattan Central Park
0

20

40

60

80

100

120

140 Chunks
Leaf chunks
Rendered chunks
Frame time [ms]
Globe render time [ms]

Figure 4.12: As the camera descends towards the ground looking straight
down, the chunk tree grows but the number of rendered chunks remains
relatively constant due to culling.

80

4.2.2 Culling for Distance Based Chunk Selection

The two culling algorithms frustum culling and horizon culling were evalu-
ated in combination with the distance based chunk selection algorithm. The
settings used are provided in table 4.3. Figure 4.13 shows the camera view
evaluated. Figure 4.14 shows an overview of the rendered chunks with the
results shown in figure 4.15.

Table 4.3: Globe rendering settings for evaluation of culling with distance
based chunk selection

Globe: Earth
Map datasets: HeightLayers = [GCS_Elevation [44]]

ColorLayers = [ESRI Imagery World 2D [28]]
LOD Scale factor: 7.8
Chunk Selection: By distance

Culling: Evaluated

Level blending: Enabled
Camera View: Looking towards western horizon

Location: New York, New Jersey

Figure 4.13: Chunks yielded by the distance based chunk selection algorithm.
Brooklyn, Manhattan and New Jersey is seen in the camera view.

81

(a) No culling (b) Frustum culling

(c) Horizon culling (d) Frustum and horizon culling

Figure 4.14: Culling of chunks with distance based chunk selection

No Culling Horizon Culling Frustum Culling Both
0

200

400

Chunks
Leaf chunks
Rendered chunks
Frame time [ms]
Globe render time [ms]

Figure 4.15: The number of chunks effected by culling

82

4.2.3 Culling for Area Based Chunk Selection

The two culling algorithms frustum culling and horizon culling were evaluated
in combination with the area based chunk selection algorithm. The settings
used are provided in table 4.4. Figure 4.16 shows the camera view evaluated.
Figure 4.17 shows an overview of the rendered chunks with the results shown
in figure 4.18.

Table 4.4: Globe rendering Settings for evaluation of culling with area based
chunk selection

Globe: Earth
Map datasets: HeightLayers = [GCS_Elevation [44]]

ColorLayers = [ESRI Imagery World 2D [28]]
LOD Scale factor: 7.8
Chunk Selection: By projected area

Culling: Evaluated

Level blending: Enabled
Camera View: Looking towards western horizon

Location: New York, New Jersey

Figure 4.16: Chunks yielded by the projected area based chunk selection
algorithm. Brooklyn, Manhattan and New Jersey is seen in the camera view.

83

(a) No culling (b) Frustum culling

(c) Horizon culling (d) Frustum and Horizon culling

Figure 4.17: Culling of chunks with area based chunk selection

No Culling Horizon Culling Frustum Culling Both
0

100

200

Chunks
Leaf chunks
Rendered chunks
Frame time [ms]
Globe render time [ms]

Figure 4.18: The number of chunks effected by culling

84

4.2.4 LOD: Distance Based vs. Area Based

The benchmark results in section 4.2.2 and 4.2.3 were compared and evalu-
ated in relation to each other. In figure 4.19 the two approaches are compared
where both frustum culling and horizon culling were enabled.

Distance based chunk selection Area based chunk selection
0

20

40

60

80

100

120

140

160
Chunks
Leaf chunks
Rendered chunks
Frame time [ms]
Globe render time [ms]

Figure 4.19: Comparison of distance based and area based chunk selection

85

4.2.5 Switching Using Level Blending

The visual result of using the distance based level blending is shown in figure
4.20.

(a) Blending disabled (b) Blending enabled

Figure 4.20: Comparison of using level blending and no blending. Level
blending hides edges the underlying chunks

Table 4.5 shows the settings used to compare having level blending en-
abled and disabled. To show the penalty in texture detail that is paid for
using level blending, the LOD scale factor was set low. Figure 4.21 shows
that the texture resolution becomes low enough to see the individual pixels
when having a low LOD. The results in table 4.6 also show that figure 4.21a
contains more visual information than 4.21b.

Table 4.5: Globe rendering settings used in benchmark

Globe: Earth
Map datasets: HeightLayers = [GCS_Elevation [44]]

ColorLayers = [ESRI Imagery World 2D [28]]
LOD Scale factor: 4.65
Chunk Selection: By distance

Culling: Frustum culling, Horizon culling
Camera View: Horizon

86

(a) Blending disabled (b) Blending enabled

Figure 4.21: Comparison of level blending and no blending. The LOD scale
factor is set low to show the resolution penalty of using blending

Table 4.6: Level blending benchmarks. Comparing the disk space of a com-
pressed JPG image of both cases works as a heuristic to the information
contained in each image

Figure 4.21 No blending Level blending

Samples per fragment 1 3
Mean globe render time 10.3 ms 10.1 ms

Mean frame time 40 ms 49 ms
Screenshot jpg size 1,1 MB 0,7 MB

87

4.2.6 Polar Pinching

The impact of polar pinching on the chunk tree was evaluated using both
distance based chunk selection and area based chunk selection. The results
are presented in figure 4.22.

Table 4.7: Globe rendering settings for evaluation of polar pinching

Globe: Earth
Map datasets: HeightLayers = [GCS_Elevation[44]]

ColorLayers = [ESRI Imagery World 2D [28]]
LOD Scale factor: 10.0
Chunk Selection: Evaluated

Culling: Frustum culling, horizon culling
Camera View: Facing down

Location: Equator (at Quito, Ecuador) and North Pole

D: Equator D: Pole A: Equator A: Pole
0

100

200

300

400

500 Chunks
Leaf chunks
Rendered chunks

Render time [10−4 s]

Figure 4.22: Comparison of distance based and area based chunk selection
at the Equator and the North Pole. D = distance based, A = area based

88

4.2.7 Benchmark: Interactive Globe Browsing

The purpose of the globe browsing is to be able to interactively explore virtual
globes and map datasets. In order to capture how the system behaves over
time, a user interaction sequence was evaluated. The sequence is described
step by step below and illustrated in Figure 4.23.

1. Camera views Earth from space

2. Descend down to Naturpark Karwendel, north of Innsbruck, Austria

3. Tilt camera up, view northern horizon

4. Turn camera 180 degrees, view southern horizon

5. Tilt camera down

Time [s]0 10 20 30 40 50 60 70 80
0

20

40

60

80

100

120

140

160

180

Chunk nodes
Leaf chunk nodes
Rendered chunks

 1. 2. 3. 4. 5.

Figure 4.23: Chunk tree over time when browsing the globe

89

4.2.8 Camera Space Rendering

Comparing the use of camera space rendering and model space rendering,
vertex jittering is apparent when interacting close to the surface. Figure 4.24
shows how vertex jittering is apparent when browsing a HiRISE patch close
to the surface of Mars. The visual result in the image is not as striking as
the artifact that appears when the camera is moving. Then the vertices are
jittering only in the case of model space rendering and not for camera space
rendering.

(a) Camera space rendering (b) Model space rendering

Figure 4.24: Vertex jittering of model space rendering

90

Chapter 5

Discussion

In this chapter, the resulting implementation and design decisions made
throughout the research phase and development phase will be discussed along
with the results presented in chapter 4.

5.1 Chunked LOD

The performance related results of the benchmarks presented in section 4.2
are discussed below.

5.1.1 Chunk Culling

From Figure 4.11 and 4.23 it is noted that the chunk tree grows as the ground
facing camera comes closer to the surface, but the number of rendered chunks
remain relatively constant. This is the desired result of the frustum culling
algorithm, which efficiently culls most of the chunk tree as the camera looks
straight down towards the ground. In Figure 4.11 we can also see that the
total globe rendering time does not only depend on the number of rendered
chunks. Even though the render call done for each rendered chunk is quite
heavy (including accessing texture data and setting uniforms on the GPU),
other things such as chunk selection and performing culling (done for each
leaf node) are operations that also affect the render time.

In figure 4.15, the culling algorithms are evaluated and compared for
a camera view looking at the horizon. Looking at the horizon means a
much larger geographical area is visible to the camera compared to looking
straight down towards the ground as in the case discussed above. This means
that chunk culling algorithms can not be expected to increase the rendering
performance as much as in the case above. However, it can be seen that

91

by using both the culling approaches, the globe rendering time is reduced
approximately by a factor 10. When comparing the two, we see that the
frustum culling algorithm does a much better job reducing the number of
rendered chunks than than horizon culling. This is intuitively explained by
the fact that horizon culling can only cull chunks far away, where the selection
algorithm prefers choosing a few big, low resolution chunks any way. The
frustum culling algorithm, on the other hand, may cull chunks that are both
far away and very close to the camera. However, there is no practical reason
for not using both the algorithms in combination at any time. The overhead
of running both algorithms is paid back in rendering time as seen in figure
4.15.

5.1.2 Chunk Selection

In order to efficiently render camera views including facing the horizon, pa-
rameter tuning and optimization should not focus on chunk culling.

Instead, the selection algorithm need to be carefully considered. In fig-
ure 4.19, the two implemented chunk selection algorithms are compared to
each other for such a camera view. We see that the algorithm based on the
projected area is significantly faster than the distance based approach. The
explanation for this is found by looking at the figures 4.13 and 4.16 show-
ing the corresponding view for the distance based and projected area based
algorithm respectively. The projected area based algorithm prioritize high
level of detail close to the camera to a larger extent than the distance based
approach, which is also how the algorithm gains its performance. By looking
at the closest rendered chunks however, we see that the same level of detail
was selected for both algorithms. Considering the relatively low difference in
the visual appearance, one conclusion is that the projected area based algo-
rithm is an efficient way to select chunks for rendering, especially for camera
views looking at the horizon. Visual penalties will mainly be apparent when
high detail is desired at distances far from the camera. Such cases can be
when tall mountains are visible near the horizon.

5.1.3 Chunk Switching

The mipmapped texture data within a single dataset does not have to be
strictly down sampled versions of the original size. The dataset may be
combined from multiple different data sources such as satellite imagery and
aerial photographs. Thus, two adjacent mip levels within a map dataset may
look very different from one another. This is one motivation for using level
blending as a main approach for chunk switching.

92

As seen in the results of section 4.2.5, the level blending removes the oth-
erwise visible edges between chunks of different level. However, the penalty
for using level blending is not directly the increase in render time (which
is insignificant) but rather the loss of image quality, as seen in table 4.6.
Enabling the level blending algorithm for this specific case reduces the JPG
compressed version of the screenshot from 1,1 Mb to 0,7 Mb; that is a re-
duction of 37%. In other words, using level blending can be seen as trade
off between poorer texture resolution versus popping artifacts and visible
edges. In the end it all boils down to a tradeoff in render time as the LOD
scale factor can be increased to compensate the overall loss in quality for the
rendered globe. The quality per rendered chunk, however, is undoubtedly
reduced notably.

As mentioned in section 5.1.2, the projected area based selection ap-
proach was concluded to be more efficient than the distance based. However,
using the area based approach comes with the drawback of not being able to
correctly perform distance based chunk switching using level blending on a
per-fragment basis. The convenience of using a simple distance based chunk
selection algorithm is that the exact same calculations can be used in a frag-
ment shader to calculate the interpolation parameter for the different mip
levels of the texture datasets. Calculating a correct interpolation parame-
ter corresponding to the projected area based chunk selection algorithm is
a harder problem, not considered in the scope of this thesis. Conceptually,
one approach could be to use bilinear interpolation based on four blending
control points in each corner of the chunk. These values, however, would
inherently depend on the LOD level of neighboring chunks, which makes the
problem non-trivial.

5.1.4 Inconsistent Globe Browsing Performance

Using quad trees (chunk trees) is a simple approach for hierarchically dividing
a region into smaller subregions. However, the way the chunk trees are
structured may cause different geographical regions to correspond to different
types of chunk tree structures. That is, two different chunks on the same
chunk level can correspond to large differences in the total number of nodes
in the chunk tree. As an example: if the camera is looking at a small region
just north of the equator, the whole southern hemisphere can be efficiently
culled. However, if the camera moves just a few meters south, the chunk tree
needs to suddenly consider a lot more chunks than previously. This effect
will cause the performance of the rendering system to be affected by location.
This would explain the same number of chunk nodes in figure 4.12 for East
America and New York.

93

From Figure 4.23 we can see that the chunk tree grows as the camera
views the horizon, as do the number of rendered chunks. When turning the
camera 180 degrees, the chunk tree shrinks temporarily. This is explained
by the fact that the chunk tree growth is limited by the available tile data.
Rotating half a revolution causes a lot of previously unseen chunks to no
longer be culled by the culling algorithms. The tree grows again as the map
tiles for these chunks are being fetched.

5.2 Ellipsoids vs Spheres

Representing globes as ellipsoids and not as spheres was a decision settled
early in the development process. The accuracy that the ellipsoidal model
gives is important to be able to show near Earth orbits and rocket launches
where the space crafts need to be positioned accurately relative to the WGS84
reference frame which is used in the SPICE library. Other globes such as
the planet Saturn has a clearly visible ellipsoidal shape due to its angular
momentum. This can now be shown in OpenSpace by configuring the planet
to have the correct radii.

5.3 Tessellation and Projection

The choice of using geographic tessellation for the ellipsoid was a direct re-
sult of using equirectangular geodetic map projections. The equirectangular
geodetic map projection is very common for many public map datasets and
was therefore a given choice to be able to visualize a vast amount of data on
the globes surfaces.

The drawbacks with oversampling at the poles giving undesired visual
artifacts was considered, but in the end prioritized down due to time restric-
tions. However, due to the fact that the issue of polar pinching was not
handled explicitly, the resulting issue of performance drops close to the poles
can be seen in section 4.2.6.

The most reasonable solution to the polar issues would be to use polar
caps similar to Dimitrijević and Rančić’s solution [24]. Even though the
LOD algorithm is different, the similarities in tessellation and map projec-
tion would mean that the implementation would have similar characteristics.
Polar caps will however not solve all problems related to poles in geograph-
ical grid tessellations. The first time the software wants to render chunks
on a polar cap near the pole, it will still need to request all the same tiles
that a it would using a standard geographical grid tessellation. If it later

94

is able to cache all reprojected tiles, they will be faster to render next time
they are requested. The requests together with the re-projections will make
it slower to visualize tiles at the caps, this could be a big limitation for
datasets that needs to be accessed fast such as temporal datasets used for
animating textures. Many of the GIBS datasets however are available in
both equirectangular format as well as polar stereographic (EPSG:3413) for
the North Pole and Antarctic polar stereographic (EPSG:3031) for the South
Pole. Hence re-projection would not be needed if the polar caps are defined
with stereographic projections.

5.4 Chunked LOD vs Ellipsoidal Clipmaps

Both Ellipsoidal clipmaps and chunked LOD were thoroughly considered as
the overall LOD algorithm to used. Both methods were implemented as
proofs of concepts before deciding on using the chunked LOD approach.

The clipmap implementation was aborted as the chunked LOD was sig-
nificantly more straight forward to implement and early on started yielding
visible results. Moreover, having decided on using equirectangular tessella-
tion and map projection, the ellipsoidal clipmap approach would completely
depend on an working implementation of polar caps, which would have ex-
tended the implementation time further with the need of considering both
re-projection and edges.

Even though geometry clipmaps would pose some very different render-
ing challenges than the chunked LOD approach, many components devel-
oped for the chunked LOD approach could be shared between the two ap-
proaches. The commonly used components would include the entire texture
data pipeline and layer structure along with all the geometric related calcu-
lations, the interaction mode and various helper classes. The main difference
is the rendering pipeline even though it also has similarities; for example,
using the model space and camera space vertex rendering schemes could be
done for geometry clipmaps just as well as for chunk grids.

5.5 Parallel Tile Requests

Requesting tiles from a given remote dataset could in theory be performed
in parallel but GDAL puts some restrictions on open datasets. GDAL can
internally request tiles in parallel when performing the RasterIO operation.
However, GDAL does not guarantee thread safe reading within all its formats.
Reading from one open dataset on several threads in parallel often results

95

in corrupt tiles. If the parallelization is limited to be performed on separate
overviews however, GDAL’s data writing and caching would hopefully not
lead to race conditions between threads since overviews are completely sep-
arated from each other. Another method to speed up GDAL requests could
be to open several GDAL dataset per tile dataset. However this will lead to
internal cache misses within GDAL that most likely results in even slower
requests and unnecessary memory usage.

5.6 High Resolution Local Patches

The software was implemented to be able to handle highly detailed datasets
down to 25 centimeters per pixel as shown in section 4.1.6 rendering HiRISE
patches. Using the combination of HiRISE patches, CTX patches and a
global terrain model with textures, the detail level together with the vast
scale of surrounding canyon walls resulted in a combined view as close as
possible to the real landscapes of Mars.

As described under appendix B however, reading local patches used to
render in OpenSpace requires extensive amount of preprocessing. Another
issue is that a very sparse dataset specified with a virtual dataset (described
in appendix B) currently poses on OpenSpace is that empty tiles outside of
the defined region are still initialized which makes the software run slower.
The preprocessing and the unnecessary initialization makes reading and ren-
dering of local patches more of a proof of concept and will be left for further
development as future work.

96

Chapter 6

Conclusions

From the results and experimentation of this globe rendering system, the
following conclusions have been drawn:

• Chunked LOD is the most straight forward approach for out-of-core
rendering of large scale map datasets where accuracy is important.

• Using a combination of frustum culling and horizon culling, the ren-
dering time can be kept relatively constant with respect to distance to
the ground when camera is facing straight down.

• A chunk selection algorithm based on the chunks projected area is more
efficient than one based on only the chunk’s distance to the camera.
The projected area based approach is better in terms of resulting visual
appeal versus rendering performance.

• Distance based level blending can be done on the fragment shader to
significantly reduce the appearance of chunk edges successfully when
used in combination with distance based chunk selection. However,
in order to perform accurate level blending using a area based chunk
selection algorithm, another approach for the fragment shader must be
considered.

• The number of chunk nodes in the tree depends not only on the chunk
selection algorithm per se, but also on the geographic location of the
camera due to the underlying quad tree.

97

Chapter 7

Future Work

We will discuss the most relevant features that could be added to the globe
browsing module in the future. There are possibilities for optimizations as
well as a need for features, required from a fully versatile globe browsing
system, that easily extends beyond the scope of this thesis.

7.1 Parallelizing GDAL Requests

Given the discussion about parallelizing of GDAL WMS requests under sec-
tion 5.5, testing parallelizing on a per overview level would be reasonable to
maximize efficiency in tile requests. The best thing, of course, would be if
the developers of GDAL made sure that WMS requests would be thread safe.

7.2 Browsing WMS Datasets Upon Request

The focus was not put on user interfacing, but instead the techniques required
for rendering. A given future feature however would be to provide the users of
the software the ability to specify datasets to read during runtime. This could
be done using the GetCapabilities operation for WMS or WMTS providers
to be able to list all available datasets behind a service. Then users could
select a specific dataset to load on demand.

7.3 Integrating Atmosphere Rendering

Integrating a sophisticated atmosphere rendering technique for globe brows-
ing would make the complete experience more rewarding. Using atmospheric

98

parameters defining phenomena such as Rayleigh scattering and Mie scat-
tering estimated for globes around our solar system, the representations of
other worlds would be more accurate. With the implemented system, these
estimations could be based on public, real world weather data. Atmospheres
also works great for generating depth cues which enhances the illusion of true
scale within the visualization of globes.

7.4 Local Patches and Rover Terrains

The ability to read and render local patches will be developed further to
ensure easy integration of geographically smaller datasets. A goal in the
future is to be able to read and render even higher resolution imagery than
demonstrated in this thesis. Rendering Mars rover terrain models, on top of
HiRISE patches, on top of CTX patches, on top of a global terrain datasets
would transport audiences and users of the software even closer to the real
surface of Mars with all the detail in imagery currently available through
research of the planet’s geology.

7.5 Other Features

There are other features that naturally can be incorporated to make the
software more usable.

A switching algorithm implemented on the shader corresponding to the
area based chunk selection algorithm can be researched and explored further.

Another switching approach than the level blending approach introduced
can be to temporally interpolate between levels as chunks are split. This will
decrease the number of textures needed for switching but will still lead to
visible edges between chunks of different levels.

The skirt lengths can be optimized to decrease the number of fragments
rendered. This can be done if each chunk has knowledge of the adjacent
chunks height data at the edges. To avoid potential cracks that might appear
when a chunk of high level is adjacent to a chunk of low level, skirt lengths
can be set to be proportional to the geodetic size of the available height map
and not the chunk itself.

Annotations such as country names can currently only be rendered us-
ing pixel based layers. Introducing vector formats for layers would make it
possible to display annotations such as text without the discrete changes of
different levels.

Other types of tile providers can also be implemented. Examples are:

99

text tile provider for visualizing a lat-long grid, temporal tile provider using
local image data.

7.6 Other Uses of Chunked LOD Spheres in

Astro-Visualization

Rendering of ellipsoidal or spherical models is not only useful for globes.
Being able to browse the night sky using an inverted sphere also requires a
LOD approach to be able to visualize the most distant objects in high level
of detail. World Wide Telescope uses such a technique to render photographs
of distant galaxies when pointing the camera to the sky. The edge of our ob-
servable Universe could also be rendered as a sphere textured with a mapping
of the cosmic microwave background radiation.

100

References

[1] OpenSpace,
http://openspaceproject.com/, (accessed 2016-11-16)

[2] Patrick Cozzi and Kevin Ring, 3D Engine Design for Virtual Globes,
CRC Press, 1st edition, 2011.
http://www.virtualglobebook.com (accessed 2016-08-03)

[3] Google Maps,
http://maps.google.se, (accessed 2016-08-17)

[4] National Oceanic and Atmospheric Administration, Science On a
Sphere,
http://sos.noaa.gov/, (accessed 2016-08-17)

[5] NASA’s Navigation and Ancillary Information Facility, An Overview of
SPICE, NASA’s Ancillary Data System for Planetary Missions, 2016.
http://naif.jpl.nasa.gov/pub/naif/toolkit_docs/Tutorials/

pdf/individual_docs/03_spice_overview.pdf, (accessed 2016-11-
16)

[6] SCISS AB, Uniview,
http://sciss.se/uniview, (accessed 2016-08-17)

[7] World Wide Telescope, American Astronomical Society,
http://www.worldwidetelescope.org, (accessed 2016-08-17)

[8] Evans & Sutherland, Digistar,
http://www.es.com/Digistar, (accessed 2016-08-17)

[9] Sky-Skan, DigitalSky,
https://www.skyskan.com/products/ds, (accessed 2016-08-17)

[10] Brano Kemen and Laco Hrabcak, Outerra Website,
http://www.outerra.com, (accessed 2016-08-17)

101

[11] Vladimir Romanyuk, Space Engine Website,
http://en.spaceengine.org, (accessed 2016-08-17)

[12] Sasha Hinkley, Directly Imaging Exoplanets, Astrophysics Group,
University of Exeter, 2016
https://palereddot.org/directly-imaging-exoplanets/, (ac-
cessed 2016-08-18)

[13] Map Projection Images,
https://en.wikipedia.org/wiki/List_of_map_projections, (ac-
cessed 2016-11-25)

[14] Open Geospatial Consortium Inc, OpenGIS Web Map Server Implemen-
tation Specification, 2006.

[15] Open Source Geospatial Foundation, Tile Map Service Specification,
https://wiki.osgeo.org/wiki/Tile_Map_Service_Specification,
(accessed 2016-08-17)

[16] Open Geospatial Consortium Inc, OpenGIS Web Map Tile Service Im-
plementation Standard, 2010.

[17] Global Imagery Browse Services GIBS Available Imagery Products,
https://wiki.earthdata.nasa.gov/display/GIBS/GIBS+

Available+Imagery+Products, (accessed 2016-11-27)

[18] ESRI, Arcgis Online,
https://www.arcgis.com, (accessed 2016-08-17)

[19] U.S. Geological Survey, Mars Viking MDIM21 ClrMosaic global 232m,
http://astrogeology.usgs.gov/search/map/Mars/Viking/MDIM21/

Mars_Viking_MDIM21_ClrMosaic_global_232m, (accessed 2016-11-23)

[20] Online Map Viewer for MRO CTX Patches,
http://viewer.mars.asu.edu/viewer/ctx#T=0, (accessed 2016-11-
23)

[21] Lunar & Planetary Laboratory HiRISE Digital Terrain Models,
http://www.uahirise.org//dtm/, (accessed 2016-11-23)

[22] NASA Jet Propulsion Laboratory, Onmoon Web Interface, California
Institute of Technology
http://onmoon.jpl.nasa.gov, (accessed 2016-08-17)

102

[23] Isaac Newton, Philosophiae naturalis principia mathematica, J. Soci-
etatis Regiae ac Typis J. Streater, University of California, 2011.
https://books.google.se/books?id=-dVKAQAAIAAJ, (accessed 2016-
11-11)

[24] Aleksandar M. Dimitrijević and Dejan D. Rančić Ellipsoidal Clipmaps -
A planet-sized terrain rendering algorithm, In Proceedings of the Eighth
Joint Eurographics / IEEE VGTC conference on Visualization (EURO-
VIS’06), Comput. Graph. 52, C (November 2015), 43-61, 2015.
doi: http://dx.doi.org/10.1016/j.cag.2015.06.006, (accessed 2016-11-01)

[25] Hierarchical Triangular Mesh, Sloan Digital Sky Survey, 2007.
http://www.skyserver.org/HTM/ (accessed 2016-11-12)

[26] European Petroleum Survey Group,
http://www.epsg.org, (accessed 2016-11-11)

[27] Spatial reference list,
http://spatialreference.org/ref/epsg/, (accessed 2016-08-10)

[28] ESRI, ArcGIS Online, ESRI Imagery World 2D WGS84,
https://www.arcgis.com/home/item.html?id=

37b8a8b1014747deb5e15472d06d0da9, (accessed 2016-11-25)

[29] ESRI, ArcGIS Online, World Imagery,
https://www.arcgis.com/home/item.html?id=

10df2279f9684e4a9f6a7f08febac2a9, (accessed 2016-11-25)

[30] Sarah E. Battersby, Michael P. Finn, E. Lynn Usery and, Kristina H.
Yamamoto, Implications of Web Mercator and Its Use in Online Map-
ping, Cartographica 49:2, 2014, pp. 85-101, 2014.
doi: http://dx.doi.org/10.3138/carto.49.2.2313, (accessed 2016-11-11)

[31] Jonathan Fay, WorldWide Telescope Projection Reference,
http://www.worldwidetelescope.org/docs/

worldwidetelescopeprojectionreference.html, (accessed 2016-
11-16)

[32] NASA, Jet Propulsion Laboratory, HEALPix,
http://healpix.jpl.nasa.gov/index.shtml, (accessed 2016-11-23)

[33] Mark Duchaineau, Murray Wolinsky, David E. Sigeti, Mark C. Miller,
Charles Aldrich, and Mark B. Mineev-Weinstein. ROAMing Terrain:
Real- Time Optimally Adapting Meshes, In Proceedings of the 8th

103

Conference on Visualization #97, pp. 81-88. Los Alamitos, CA: IEEE
Computer Society, 1997,

[34] Brano Kemen, Procedural terrain algorithm visualization, 2009,
http://outerra.blogspot.se/2009/02/

procedural-terrain-algorithm.html (accessed 2016-11-16)

[35] Terragen - Planetside Software, Terragen Wiki - Procedural Data, 2013,
http://planetside.co.uk/wiki/index.php?title=Procedural_

Data, (accessed 2016-11-16)

[36] Christopher C. Tanner, Christopher J. Migdal, and Michael T. Jones,
The clipmap: a virtual mipmap, In Proceedings of the 25th annual con-
ference on Computer graphics and interactive techniques (SIGGRAPH
’98), New York, NY, USA, 151-158, 1998.
doi: http://dx.doi.org/10.1145/280814.280855, (accessed 2016-11-01)

[37] Frank Losasso and Hugues Hoppe Geometry Clipmaps: Terrain Render-
ing Using Nested Regular Grids, ACM Trans. Graphics (SIGGRAPH),
23(3), 2004.

[38] Malte Clasen and Hans-Christian Hege, Terrain rendering using spher-
ical clipmaps, In Proceedings of the Eighth Joint Eurographics /
IEEE VGTC conference on Visualization (EUROVIS’06), Aire-la-Ville,
Switzerland, 2006.
doi: http://dx.doi.org/10.2312/VisSym/EuroVis06/091-098, (accessed
2016-11-16)

[39] Mark Segal and Kurt Akeley, The OpenGL Graphics System: A Speci-
fication (Version 4.0 (Core Profile) - March 11, 2010), CRC Press, 1st
edition, 2010.

[40] The Institute of Electrical and Electronics Engineers IEEE Standard
for Binary Floating-Point Arithmetic, The Institute of Electrical and
Electronics Engineers, Inc, New York, 1985.
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=30711,
(accessed 2016-11-18)

[41] Brano Kemen, Maximizing Depth Buffer Range and Precision, Article
for the Outerra software, 2012.
http://outerra.blogspot.se/2012/11/

maximizing-depth-buffer-range-and.html (accessed 2016-11-14)

104

[42] The Open Source Geospatial Foundation, GDAL - Geospatial Data Ab-
straction Library, GDAL Website,
http://www.gdal.org, (accessed 2016-11-16)

[43] The General Helpful Open Utility Library,
https://github.com/OpenSpace/Ghoul, (accessed 2016-11-23)

[44] Lucian Plesea ESRI World Elevation 3D Equirectangular Reprojection,
http://198.102.45.23/arcgis/rest/services/worldelevation3d/

terrain3d?request=GetCapabilities, (accessed 2016-11-25)

[45] US Geological Survey Mars Orbiter Laser Altimeter (MOLA) DTM,
http://astrogeology.usgs.gov/search/map/Mars/

GlobalSurveyor/MOLA/Mars_MGS_MOLA_DEM_mosaic_global_463m,
(accessed 2016-12-12)

105

Appendices

106

Appendix A

General Use of Globe Browsing

in OpenSpace

https://github.com/OpenSpace/OpenSpace/wiki/

Concepts-Modules-GlobeBrowsing-GeneralUse

107

Appendix B

Build Local DEM Patches to

Load With OpenSpace

https://github.com/OpenSpace/OpenSpace/wiki/

Concepts-Modules-GlobeBrowsing-BuildLocalDEMPatchestoLoadWithOpenSpace

108

