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Abstract

In the last decade, convolutional neural networks have been used to a large extent for im-
age classification and recognition tasks in a number of fields. For image weather classifica-
tion, data can be both sparse and unevenly distributed amongst labels in the training set.
As a way to improve the performance of the classifier, one often use traditional augmen-
tation techniques to increase the size of the training set and help the classifier to converge
towards a desirable solution. This can often be met with varying results, which is why
this work intends to investigate another approach of augmentation using image synthesis.
The idea is to make use of the fact that most datasets contain at least one label that is well
represented. In weather image datasets, this is often the sunny label. CycleGAN is a frame-
work which is capable of image-to-image translation (i.e. synthesizing images to represent
a new label) using unpaired data. This makes the framework attractive as it does not put
any unnecessary requirements on the data collection.

To test the whether the synthesized images can be used as an augmentation approach,
training samples in one label was deliberately reduced sequentially and supplemented
with CycleGAN synthesized images. The results show adding synthesized images using
CycleGAN can be used as an augmentation approach, since the performance of the clas-
sifier was relatively unchanged even though the number of images was low. In this case
it was as few as 198 training samples in the label that represented foggy weather. Com-
paring CycleGAN to traditional augmentation techniques, it proved to be more stable as
the number of images in the training set decreased. A modification to CycleGAN, which
used weight demodulation instead of instance normalization in its generators, removed
artifacts that otherwise could appear during training. This improved the visual quality of
the synthesized images overall.
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1 Introduction

Since the launch of the ImageNet Large Scale Visual Recognition Challenge (ILSVRC), a lot
of research has been put into developing deep neural networks regarding object recognition
in still images and image classification. To achieve image classification with smaller error
rates, most methods lean towards making the networks deeper [1]. Such approach requires
larger training sets to utilize the networks full potential. Weather classification, which is
relatively new topic within computer vision and image classification [2, 3], is a specific case
where labelled (categorized) data can often be sparse and unevenly distributed (known as
imbalanced data). This is mostly due to weather conditions such as rain and snow are rare in
comparison to sunny and hazy days. Unevenly distributed data could have consequences on
a network, as the representation learning degrades its overall performance. To compensate
for inadequate and imbalanced labels in the general sense, while also improving the accuracy
of an image classifier, various forms of data augmentation can be used [4, 5].

1.1 Background

Data augmentation is the process of creating fake data, to alter the training process of a neural
network. This has proven to enhance the results of the training process, as it creates larger
training sets and helps to control the regularization of the network, leading to a better gener-
alization. However, this is under the assumption that the data is evenly distributed. Common
strategies for data augmentation of images are rotation, translation, cropping and noise injec-
tion. A proposal of augmenting image data, to shift the distribution of labels, is to synthesize
images from well represented labels to underrepresented labels.

Generative adversarial network (GAN) is a deep learning method that builds up multiple
layers of abstractions, to synthesize images which can be mistaken as real. CycleGAN is an
addition to the family of GANs, which introduces a cycle consistency [6]. CycleGAN has
been studied in greater detail, but the question whether this model can be used to balance
imbalanced training data for weather classification remains somewhat unexplored.

1



1.2. Aim

1.2 Aim

The aim is to explore the prospect of augmenting existing image data for multi-weather clas-
sification, in terms of creating uniform distributed labels. The focus will be on synthesis-
ing images using CycleGAN to generate images containing different weather conditions. To
evaluate the results, comparison will be done between an augmented dataset and an existing
dataset using a convolutional neural network (CNN) as a multi-class weather classifier.

1.3 Research questions

1. How can CycleGAN be used to enhance the performance of an existing CNN-classifier
using an imbalanced training set of weather images for multi-class weather classifica-
tion?

2. Is it possible to augment images to represent other weather phenomenons from sunny
images, such as fog, rain and snow? Are there any significant differences between Cy-
cleGANs capability of generating the different weather phenomenons?

3. How does the quality of CycleGAN generated images change when reducing the num-
ber of training samples in the target domain?

4. For weather classification: How well does traditional augmentation techniques perform
compared to CycleGAN when balancing an imbalanced dataset?

1.4 Delimitations

An existing CNN-model will be used as a multi-weather classifier and its implementation will
be done according to previous studies [4]. The size of the images used to train the classifier
and the CycleGAN will be limited in size, due to the computational power and time demand
to train a deep neural network. As the focus is to see whether CycleGAN can be used to
create a more uniform distribution of labels in a dataset, existing datasets related to weather
classification will be used. Furthermore, the target labels in the dataset will be limited to the
weather conditions fog, rain and snow, as these are typically underrepresented labels in most
datasets found online.

2



2 Theory

In this chapter, theory relevant to convolutional neural networks (CNN) and generative ad-
versarial networks (GANs) will be presented. This chapter will also present how their prop-
erties ties into image classification and image synthesis respectively.

2.1 Deep learning

Deep learning belongs to a group of methods based on artificial neural networks (ANNs),
which tries to find representations needed for feature detection or classification from raw
data. ANNs are referred to as neural networks, because their structure is inspired by biolog-
ical neural networks e.g. the human brain [7, 8]. The human brain is composed of biological
neurons that connects to one another and forms a massive framework, to work in parallel
with each other. A biological neuron receives electrochemical stimulations through its den-
drites, which are connected to other neurons and passes the stimulation through the axon,
which is a neurons output [9]. A simplified version of this process is depicted in Figure 2.1. A
neurons’ axon can often be approximated as a threshold function, which determines whether
that neuron should be activated. This is done by measuring the net stimulus through the
dendrites and determine if it is above a certain threshold.

Figure 2.1: A simple depiction of a biological neuron which receives its electrochemical stimulations
through its dendrites and passes the stimulation along through its axon.

3



2.1. Deep learning

Figure 2.2: An overview of a traditional feedforward neural network. The circles represent the artificial
neurons e.g. the computational units of the network. The neurons are connected to each other in dense
layers, meaning that a neuron is connected to all neurons in both the previous and next layer.

Similar to its biological counterpart, the building blocks of an artificial neural network are
small computational units known as artificial neurons (hereafter referred to as neurons)
which receives and produces signals to compute the output of a network. The most com-
mon ANN models are feedforward neural networks, also known as feedforward networks
or multilayer perceptron (MLP), where information flows through the network in one direc-
tion [8]. This process of passing the information forward is known as forward propagation.
It is worth noting that there are other variations such as recurrent neural networks that include
feedback connections, but these will not be discussed in the report. Neurons in a feedforward
network are often connected to each other in a layer structure (represented as vectors of val-
ues) as seen in Figure 2.2. The figure exemplifies a network with dense (or fully-connected)
layers, which means that each neuron receives inputs from all components in the previous
layers and proceeds to pass an output to all components of the next layer. For reference, the
first layer which receives the input is named input layer. This layer is followed by one or
more intermediate layers named hidden layers, which processes the inputs to generate an
output to the last layer known as output layer.

The generalized structure of a neuron can be seen in Figure 2.3. A neuron receives a number
of n input signals of value xi from neurons in a previous layer, each with an associated weight
θi (1 ď i ď n) to them and an inclusion of a bias term b and a bias unit x0 [10]. The weights
determine the importance between a set of neurons in regard to specific features in the input,
whereas the bias resolves cases where all inputs to the neuron is 0. The bias is also capable
of (similar to a linear regression model) shifting the hyperplane in the multi-dimensional
solution space, providing the model with more flexibility to find an optimal solution [11].
For the neuron to pass the signal forward to the next layer of the network, the neuron must
first be activated by meeting a certain threshold, like the axon in a biological neuron. This is
determined by applying an activation function α to the input of the neuron (i.e. the weighted
sum of all n inputs plus bias). The output of one neuron z of the j:th layer can therefore be
described as:

z = α(bx0 +
n
ÿ

i=1

θijxi) (2.1)

In order for a neural network to extract complex features, non-linearity must be introduced to
the network. Otherwise, the network becomes nothing more than a complex logistic regres-
sion model. This is often done through the various activation functions the network architect
can choose from. Although activation functions can behave differently and the choice(s) will

4



2.1. Deep learning

Figure 2.3: Representation of an artificial neuron in a neural network. The neuron receives a number of
n inputs of value xi with an associated weight θi (1 ď i ď n) and a bias term b. The weighted sum of
the input is thereafter applied to the activation function α which determines whether the neuron should
pass information to whichever neuron(s) it is connected to.

have great impact on the network, there are some distinct similarities between them. In par-
ticular, all activation functions should be continuous and differentiable (as will be explained
later, differentiability is an important and necessary property for training a neural network).
Another similarity is how the functions choose to map their output, as most activation func-
tions ranges between [-1, 1] or [0, 1].

Feedforward networks can be used in a variety of situations to solve various task, but net-
works always tries to approximate some function f ˚(x) known as the hyperthesis where x is
the input [10, 12]. Assuming that the task involves classification using a supervised learning
approach (i.e. the model is trained by providing the sought output for each input sample),
a network tries to map an input x to a label y using the function y = f ˚(x). For such a
task, the network defines a mapping y = f (x; θ) where weights θ learns the best approx-
imation of the said function f ˚(x). This is done though training on a set of input data,
where each input has an associated label which represents the ground truth or f ˚(x). The
models are called networks, because they are typically represented as a chain of multiple dif-
ferent functions f (n), where f (1) denotes the input layer. The number of functions in the
chain determines the depth of the network i.e an n layer deep network can be described as
f (x) = f (n)( f (n´1)(... f (1))) whereas the width is determined by the dimensionality of the
hidden layers.

Training a feedforward network requires passing the output from the output layer through
a cost function J(θ) (sometimes referred to as loss function or objective function) [10]. The
cost function is used to measure the difference between the output from the output layer and
the ground truth. This measurement directly specifies what the output layer must do for
each input x with its respective label y. As for the other layers, the behavior is not directly
specified. Because the training of an network does not specify a desired output of these layers
but rather learn how to use them, is why they have gotten the term hidden. During training the
cost of J(θ) is referred to as empirical loss (or training error), where minimizing the empirical
loss will increase the accuracy of the network [Note: here are instances where training a
network to achieve as small of an error as possible can lead to overfitting as will be explained
in Section 2.4] [13]. Minimizing the empirical loss can be done by computing the gradient and
update the weights θ according to a given optimization algorithm (or optimizer for short).
One method of iteratively regulating the weights in regard to the gradient during training is
called gradient descent. Gradient descent initializes the trainable weights θ to some random
number (research has shown that initializing random values according to some distribution
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2.2. Convolutional neural network

Figure 2.4: Simplified example of gradient descent, where traversing in the negative direction of the
gradient, and given a sufficient step size, the algorithm will converge towards a minima. Example:
initializing weights θ at a random value a will converge to the global minima c while value b will
converge to the local minima d.

or using pre-trained weights [14, 15] can reduce training time and increase accuracy) and
change the value by a proportional amount to the negative gradient:

θ(t + 1) = θ(t)´ η
dJ
dθ

(2.2)

where η is a small negative number known as learning rate. Figure 2.4 shows a simple ex-
ample of the algorithm in a 1D space, where given a random value a on function J(θ) and a
small learning rate, gradient descent will converge to the global minima c as t Ñ 8. Note
that this is not always the case, as given the initial value b of θ(t) will converge to the local
minima d.

Calculating the gradient for the gradient descent algorithm requires careful application of
the chain rule and hard-coding the explicit expression. Therefore, applications uses the back-
propagation algorithm (or backprop for short) which is a generalization of the derivatives of
the network [16]. The algorithm is an iterative process, which starts at the output layer and
continues till it reaches the input layer. For each iteration, the partial derivative of the cost
function in respect to the trainable parameters of the j:th layer is calculated.

2.2 Convolutional neural network

Convolutional neural networks (CNN) are a specialized kind of neural network, which pro-
vides superior performance on data that has a grid-like topological structure, like images
[10]. The definition of a CNN, in contrast to a traditional feedforward network, is that a CNN
employs the mathematical operation of convolution instead of the traditional matrix multi-
plication in at least one of its layers. This makes it possible for the network to extract aspects
(or features) from images and differentiate between different input images. Convolutional-
along with pooling operations reduces the amount of parameters that a feedforward network
otherwise would have, while extracting the important information and making the input im-
ages smaller [17]. Thus, CNNs makes it possible to compute large-scale color images that a
traditional feedforward networks would struggle heavily with, in regard to computational
complexity. The parameters in a CNN should not be spatially dependent, which makes it a
good fit for image classification. It does not matter where in the image an object can be found.
The CNN starts with extracting low level of features (general shapes) and continues to extract
higher levels of features (details) deeper into the network. What follows after a series of con-
volutional and pooling layers are fully connected layers which makes up the classifier of the
network. The classifier takes an abstraction of the input images, generated from the various
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2.2. Convolutional neural network

Figure 2.5: An overview of a traditional convolutional neural network (CNN) with a mix of convolu-
tional and pooling layers in the beginning of the network, followed by a fully connected layer.

convolution- and pooling layers, to deduce a label [18]. The structure of the fully connected
layers follows the architecture of traditional feedforward networks [19]. An overview of a
general CNN can be seen in Figure 2.5.

2.2.1 Convolution operation

Convolution is the mathematical linear operation of generating a function s(t) from two ex-
isting functions x(a) and w(a). This can be defined as the integral of the product between
two functions, where one function is reversed and shifted:

s(t) = (x ˚w)(t) =
ż 8

´8

x(a)w(t´ a)da (2.3)

For convolutional networks, the input is an image equivalent to input x in Eq. 2.3 and the sec-
ond argument w is a kernel, as can be seen in Figure 2.6. The output s is often called a feature
map or activation map [10]. Taking the integral assumes that measurements are provided at
every instant, which is not possible when computers are only capable of handling discrete
values. Therefore, the convolution operation is discretized as a summation of samples at
regular intervals:

s(t) = (x ˚w)(t) =
8
ÿ

a=´8
x(a)w(t´ a) (2.4)

In machine learning applications, images and other intrinsic structured data are often repre-
sented as multidimensional datastructures (tensors) [20]. For images, this refers to the spatial
dimensions as well as the depth i.e. the different color channels. Because the elements in the
input and kernel needs to be explicitly defined, values which are not within the finite set are
assumed to be zero. This means that in practice, the infinite sum in the convolutional oper-
ation (Eq. 2.3) can be defined as a summation over a finite number of elements. Performing
convolution over two dimensions simultaneously (this would mean the spatial dimensions
of an image) between an input image I and a kernel K can be described as:

S(i, j) = (I ˚ K)(i, j) =
ÿ

m

ÿ

n
I(m, n)K(i´m, j´ n) (2.5)

The regular steps with the kernel K over image I is referred to as stride. The spatial dimen-
sions (mˆn) and data of the activation map, in regard to the input image, is dependent on the
kernel size and the hyperparameters zero-padding, stride and depth used in the convolving
process [18]. A 2D example of the convolution process using a 2ˆ 2 kernel with unit stride
and zero padding can be seen in Figure 2.6.

Learnable kernels (i.e. kernels which weights are altered in the training process) are used in
convolutional layers to find features specific to the input image. What kind of feature a kernel
picks up depends on the kernels structure, examples of this can be seen in Figure 2.7 where
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Figure 2.6: An example of 2D convolution with unit stride and a 2 ˆ 2 kernel, where the output is
restricted to the area in which the entire kernel lies within the image. Note this process is without
flipping the kernel. Boxes represents how upper-left area of the output tensor is formed by applying
the kernel to the corresponding area in the input image.

Figure 2.7: Three examples of edge detecting kernels of size 3ˆ 3. (Left) Kernel is capable of detecting
horizonal edges. (Middle) Kernel is capable of detecting vertical edges and (right) kernel is capable of
detecting diagonal edges.

the kernels are capable of picking up horizontal-, vertical- and diagonal edges respectively.
The weights of the learnable kernels are adjusted similar to feedforward networks through
back-propagation [21], but the key difference being that the amount of learnable parameters
in each neuron are significantly reduced. This is accomplished by letting the kernels be sig-
nificantly smaller than the input [18]. The difference can be significantly large considering
two interactive layers consisting of m outputs and n inputs would require m ˆ n parame-
ters whilst k outputs (k « m) would only require k ˆ n parameters. This lesser interaction
between neurons in different layers are referred to as sparse interaction (or sparse connec-
tivity) where the connectivity to a neuron from the previous layer is its receptive field. In
order to avoid having a set of weights for each position in the input, the convolution layers
utilizes parameter sharing to just learn a set of parameters. Parameter sharing refers to using
the same parameters for more than one function in a model since a feature can be repeated
several times in an image [10]. This is made possible since a kernel traverses the entire image.
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2.2. Convolutional neural network

2.2.2 Pooling

A convolution layer in a CNN can be broken down into three stages as seen in Figure 2.8.
The first stage involves performing a series of convolution operations in parallel to produce
a set of linear acivations [10]. In the second stage, the linear activations are passed through a
non-linear activation function (introduced in Section 2.1) where the most common one is the
ReLU (Rectified Linear Unit) function:

f (x) = max(0, x) (2.6)

The reason ReLU is so common is that its first derivative is equal to 1 everywhere the unit is
active. Additionally, it does not generate any second derivative effects when using a gradient
based optimization algorithm (as the second derivative is equal to 0) and it is fast to compute
[10]. The final stage involves using pooling function to tweak the output of the layer further.

The pooling function is an approach of downsampling feature maps by summarizing the
information within small regions (i.e. pooling size) in a decisive manner. The operation is
similar to the one of convolution, where a rectangular box (similar to the kernel) defines a
region (usually 2ˆ 2 or 3ˆ 3) which slides over the feature map to generate a value for each
cell in the output of the convolution layer. For example, the max pooling operation extracts
the maximum value within the region and discards the rest of the information. Other pooling
operations includes average pooling, which generates a single value from the average of the
entire region or the taking the L2 norm of the region. Due to the destructive nature of the
pooling function, the regions are kept small and seldom overlap i.e. the stride is set to the
grids size.

Figure 2.8: An overview of the complex layer terminology for a convolutional neural network layer.
This terminology views a layer to be composed of several "stages" as opposed to viewing each stage as
an entirely different layer. The stages include: Convolution, nonlinearity through an activation function
and pooling.

2.2.3 Classification

What follows after a series of convolutional layers are dense layers, which is a "cheap" way
of learning non-linear combinations from the high level features generated as the result of
the last feature map [10]. Section 2.2.2 mentioned that the ReLU function is commonly used
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as an activation function, another familiar activation function that is worth mentioning is the
Sigmoid function:

S(x) =
1

1 + e´x (2.7)

A non-linear compressive function which generates an output in the range of 0 to 1. In
contrast to the ReLU function, the logistic Sigmoid function does have a non-zero second-
derivative everywhere and thus introduces second-derivative effects for gradient based op-
timization algorithm. The major benefit of using the function somewhere in the network is
that it normalizes the signal. This function can be found towards the very end of a series of
convolutions or used at the end of the network in the output layer.

The dimensions of the output layer in combination with a suitable activation function is di-
rectly connected to the task which the network tries to solve. As hinted at towards the end
of Section 2.1, neural networks are often used to solve classification problems. On a general
level, classification tasks can be broken down into three types:

1. Binary classification: Where there are two classes in the target pool and the network
needs to predict the input from both classes. Theses classes are often represented using
a positive (1) and a negative (-1) integer value. When the network predicts the input,
it produces a scalar value between [0, 1] which is done through the Sigmoid activa-
tion function. The scalar value represents the probability of the image belonging to the
positive class [22].

2. Multi-class classification: Where there are more than two classes in the target pool.
Rather than producing a scalar value, the network outputs a vector, containing the prob-
ability distribution of the different classes. The class with highest probability is selected
as the predicted class [23, 24]. The values in the output vector are often generated from
the Softmax activation function:

so f tmax(z)i =
ezi

ř

j ezj
(2.8)

The Softmax activation function is a generalization of the Sigmoid function but in mul-
tiple dimensions. The function is often used in the output layer of a neural network as it
normalizes the output into a probability distribution i.e. the sum of the output is equal
to 1.

3. Multi-label classification: Compared to binary- and multi-class classification, multi-
label classification data is associated with two or more class labels. This type of clas-
sification problem is more complex. One approach of solving the classification is to
make multiple binary classifications for each data sample (remember that this requires
the Sigmoid activation function in the last layer) where a prediction follows a Bernoulli
probability distribution [25, 26].

2.3 Optimizing a CNN

Optimizing a convolutional neural network (or any other deep network for that matter) starts
at the cost function, which is a measurement of how well the network is able to match an input
to the ground truth (Section 2.1). Consider the quadratic cost function J = 1

2n
ř

x
›

›y(x)´ aL
›

›

2

where n is the total number of training inputs, y(x) is the approximated function over training
samples x and aL = aL(x) is the vectored output from the network with L layers. In order for
the cost function to be used in conjunction with backpropagation (Section 2.1) we assume it
satisfies two properties [27]:
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1. The cost function must be able to be written as an average J = 1
n
ř

x Jx over cost
functions Jx for individual training samples x, as the backpropagation algorithm re-
quires partial derivatives for a single training example. This requirement is met by
the quadratic function where the cost of a single training sample can be written as:
Jx = 1

2

›

›y´ aL
›

›

2.

2. The cost function must be able to be written as a function of the outputs of the neural
network. For a single training example, the quadratic cost function may be written as:
Jx = 1

2

›

›y´ aL
›

›

2
= 1

2
ř

i(yi ´ aL
i )

2 and thus is a function of the output activations.

A third "unofficial" assumption is that the cost function should also not be dependent on any
activation values of the network besides the output values, hence the output in the equations
above is denoted as aL. Technically, a cost function can be dependent on any activated layer
aj

i or neuron zj
i . However, if the cost function is dependent on anything other than the values

of the output layer aL, the idea of "traversing backwards" would no longer apply to the entire
network [27].

One of the major issues with the quadratic cost function is that learning can take a while
before there is a rapid change in cost, if the weight initialization is far off from the target value.
This is somewhat suboptimal and not related to how humans learn, as it would be more
ideal to force a change on the learnable parameters early on and decrease the rate of change
as the weights and biases comes closer to the optimum. This is the reason for using cross-
entropy in most cases [10, 28]. For the different classification tasks mentioned in Section 2.2.3,
cross-entropy can be broken down into two variants: binary cross-entropy and categorical
cross-entropy which compares a predicted probability distribution ŷ to a target probability
distribution y. Binary cross-entropy is used in binary classification tasks (tasks which asks
yes or no questions) and multi-label classification as well. Categorical cross-entropy is used
in multi-class classification and can be written as:

J(y, ŷ) = ´
ÿ

i

yi ¨ log ŷi (2.9)

where the predicted probability distribution represented as a vector of values ranging from
0 to 1 (assuming the last layer uses a Softmax activation function). The target probability
distribution is a often represented as a vector where the target class has a probability of 1,
and other classes 0.

2.3.1 Gradient descent methods

There are three variants of performing gradient descent, based on how the data is processed
when computing the gradient of the cost function. Depending on the amount of data and
version, the trade-off is accuracy of the updated parameters in regard to the computation
time it takes to perform the update [29].

Stochastic gradient descent

Previous sections have described the optimization process as computing the gradient and
updating the weights and biases for each training sample at the time. This method is called
stochastic or online gradient descent (SGD):

θt+1 = θt ´ η∇J(θt; x(i); y(i)) (2.10)

Performing updates one at the time does introduce the possibility of online learning, which
means new training samples can be added during training. The frequent updates also means
that the learning happens fast but with higher variance and with the expense of causing the
cost function to fluctuate heavily.
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Batch gradient descent

On the other end of the spectrum of SGD we have Batch gradient descent (BGD), where
updates happen once the gradient for all training samples has been computed:

θt+1 = θ ´ η∇J(θ) (2.11)

Since the gradient needs to be calculated for all training samples, batch gradient is slow com-
pared to the two other versions. The version also requires the epoch (one iteration over all
training samples) to be fixed in size, meaning online training is not applicable to BGD. It does
however come with the benefit having a steady update to the cost function.

Mini-batch gradient descent

Mini-batch gradient descent falls somewhere in between SGD and BGD, where the training
set is divided into smaller groups of size n (referred to as batch size):

θt+1 = θt ´ η∇J(θt; x(i:i+n); y(i:i+n)) (2.12)

What makes the mini-batch gradient descent so common is that the method reduces the vari-
ance from updating the trainable parameters in comparison to SGD. The smaller size also
makes it possible to use optimized matrix operations to speed up the calculations of the gra-
dients. Common batch-sizes varies between 16 and 256, depending on the training set and
hardware [10, 29].

2.3.2 Optimization algorithms

Optimization algorithms (optimizers) or learning algorithms are the schemes which tries to
minimize the cost function over time t. As mentioned in Section 2.1 and further discussed in
2.3.1, gradient descent is an iterative optimization algorithm which updates the weights and
biases according to the negative direction of the gradient, using some small learning rate.
Traversing in the negative direction of the gradient of the cost function ensures that each
step goes towards the local minimum. However, gradient descent is slow and often does not
arrive at a critical minima point at any time. This is more applicable to deep networks than
other machine learning algorithms, as the dimensions of the solution space increases due to
the density and amount of trainable parameters in a deep network. According to Goodfellow
et al. [10] the expected ratio between saddle points (points with zero gradient) and local
minima points increases exponentially with the number of n dimensions. If the learning rate
is too small, this can also cause the issue of ending up in "small" local minimas or get stuck in
plateaus. To avoid the slower training process and getting stuck, one could opt to use a larger
learning rate in gradient descent [Equation (2.2)] but then there is the issue of overshooting.
Overshooting means that the solution does not align with the critical point (or points of a flat
region in a local minima) and misses the minima, and thus continues to traverse the solution
space. Both scenarios where the learning rate is either too low or too large are illustrated in
Figure 2.9.

Due to these issues, various optimizers have been developed which uses momentum and
(or) an adaptive learning rate to increase the possibility of converging towards an optimum
fast without overshooting. One such scheme is the Adam optimizer [30]. Adam is a first-
order gradient-based optimization algorithm that uses decaying momentum to achieve an
adaptive learning rate with good performance. The update rule for Adam can be described
as in Equation (2.13):

12



2.4. Optimizing a CNN until convergence

θt+1 = θt ´
η ¨ m̂t
?

v̂t + ε
(2.13)

where

m̂t =
mt

1´ βt
1

(2.14)

v̂t =
vt

1´ βt
2

(2.15)

and where

mt = (1´ β1)∇J(θt) + β1mt´1 (2.16)

vt = (1´ β2)∇2 J(θt) + β2vt´1 (2.17)

where η is the learning rate depending on the momentum terms m̂t and v̂t described in Equa-
tion (2.14) and (2.15). Each momentum term depends on a decay rate β1 and β2 initialized to
be 0.9 and 0.999, that decreases as t increases. The relationship between the learning rate and
the two momentum terms (both initialized to < 1) ensures that the learning rate has momen-
tum in the beginning, but starts to slow down as time increases. This helps the network of
getting out of plateaus and local minimas early on in the training process [30]. Because both
momentum terms also depend on the gradient, the momentum will also decrease as the net-
work starts to reach an optimum. Both momentum terms are also bias-corrected according to
Equation (2.16) and (2.17). To ensure division with none-zero in Equation (2.13), the authors
of the Adam paper [30] included a small epsilon term (10´8 in most implementations).

Figure 2.9: Two possible effects of choosing a sub-optimal learning rate for gradient descent. (Left)
When choosing too small of a learning rate: Starting from point a, the solution can end up in a small
local minima or for b, the training will take a long time and in the worst case the model will never reach
a local minima in time. (Right) When choosing too large of a learning rate, the model can overshoot the
local minima and miss the optimal solution. As is the case if the solution started from point c.

2.4 Optimizing a CNN until convergence

The goal of optimizing a CNN is to approximate the relationship between an input image and
its label (recall how a deep neural network tries to approximate a function f ˚) such that the
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network can predict labels for unseen samples. The optimization process (or training process)
using the methods described in previous sections can be summarized as follows:

1. Initialize the weights of the network. This is often done at random according to
some distribution or using predetermined (pre-trained) values from a trained network
(known as transfer learning) [14, 15].

2. Forward propagate data through the network. Pass an input through the various layers
of the network till the signal reaches the output layer. The output of the network will
be its prediction.

3. Measure the prediction using a cost function. Determine the empirical loss by passing
the predicted output through a loss function.

4. Update the weights and biases with back-propagation. Compute the gradient of the
cost function using back-propagation and update the weights and biases according to
an optimization algorithm.

Repeating steps 2 to 4 for a set number of times will minimize the empirical loss of a network
over the given training samples. The lower the empirical loss, the higher the accuracy will
be over the training samples. When a network has converged, it means that a network has
tweaked its trainable parameters to the points where they are no longer updated with new
values i.e. the network has found a minimum of the cost function.

Although the goal should be to minimize the empiric loss, a higher accuracy on the training
samples does not necessarily translate well to unseen samples. This it what can cause over-
fitting, which implies that a model does not generalize its solution well to unseen samples.
This happens when a model has altered its trainable parameters such that it creates a solu-
tion that is specific to the data in the training set. On the other hand, when a model does
not have the complexity to detect features in the input or if the input is lacking certain fea-
tures, underfitting may occur. Underfitting is when the model is not capable of classifying
the training data. To evaluate the generalization of the model, it is good practice to test the
model on unseen data as the model starts to converge. This must be done on a separate set
of data that the model has not trained on, often referred to as test set. In most scenarios, the
models’ capability of generalizing is continuously monitored during training using a third
subset called validation set. Goodfellow et al. [10] suggests that the training- and test set
should be split using a ration of 8:2 on all available data and that the training set can be split
further into a training- and validation set using a ratio of 9:1. The error which the validation
set yields during training is often referred to as generalization error (or validation error). An
example of a typical relationship between the training error and validation error can be seen
in Figure 2.10. Unless more data is provided, once the generalization error starts to deviate
from the training error is the optimal time to stop the training.

2.4.1 Optimization using transfer learning

First mentioned in Section 2.1 and later referenced in Section 2.4 is the use of pre-trained
weights for weight initialization i.e. transfer learning. As with good ideas, it is often the
case that it exists a network that is capable of performing a certain task (or at least a similar
task) to the one you are trying to solve. It is therefore common practice to take the trained
weights and biases and transfer it over to your model, to decrease the time for convergence
[14]. If a network is meant to recognize images that are very much the same to the images the
pretrained weights are adjusted to, one can use transfer learning and freeze all the layers but
the last one(s). The first layers are often convolutional layers, which has learned all necessary
features needed to correctly classify new samples, while the last layers can require different
dimensions to fit the desired output.
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Figure 2.10: Example of training- and test error over time t and model complexity. The generalization
error should follow the training error to a certain point, before the model starts to fit too much detail to
the solution. This causes the model to stop generalizing and the gap between training- and generaliza-
tion error starts to increase. The optimal solution in practice is therefore when the generalization error
reaches its minimum point.

2.4.2 Optimize learning through hyperparameters

The definition of hyperparameters is variables which determines the network structure and
variables which determines how the network is trained. More often than not, the networks
structure is defined through some API like Keras [31] or PyTorch [32], with the exception of the
last one or two layers, which are modified to fit a desired output. As for the variables which
determines how the network is trained are the previously mentioned parameters, learning
rate, momentum, number of epochs and batch size. A large part of improving a network’s
performance is done through changing the variables which determines the training. For ex-
ample, changing either the learning rate or momentum may help the model to avoid local
minima in the early stages of training.

2.5 Generative adversarial network

Generative Adversarial Networks (GAN) is a neural network architecture which belongs to
the set of generative models. As the name suggests, the intent of the network is to generate (or
produce) new data which is often used for generating images [33]. The network is composed
of two sub-networks: A generator G and a discriminator D as seen in Figure 2.11. The genera-
tor network G is responsible for producing a distribution of samples pg = G(z; θg) where z is
sampled noise from a distribution pz(z) and θg are the learnable parameters of the generator
network. Its adversary is the discriminator network, which attempts to differentiate between
the samples from the training data pdata and generated samples pg. The discriminator out-
puts a single scalar given by D(x; θd)Ñ (0, 1) which represents the probability that the input
x comes from the training data. As a result, the two networks D and G plays a two-player
minimax game, where D maximizes the probability of assigning the correct labels and G to
minimize log(1´D(G(z)) [10]. This results in a value function describing the adversarial loss
L:

min
G

max
D

V(G, D) = Ex„pdata log D(x) + Ex„pz log(1´D(G(z))) (2.18)

Theoretically, the competition should continue until the discriminator is not capable of distin-
guishing generated images pg from real i.e. the global optimum is fulfilled when pg = pdata.
This leads to the discriminator predicts 1

2 for all samples. However, this is seldom the case as
most of the time the discriminator learns to distinguish between real- and generated images
better than random guessing.
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Figure 2.11: An overview of the GAN model. The network is composed of two sub-networks: A gener-
ator G and a discriminator D which competes in a minimax game.

When the goal is to generate images it is smart to use a convolutional structure in both the
generator- and discriminator network. For the same reasons as stated in Section 2.2, a con-
volutional structure causes the networks to have a sparse interaction and parameter sharing
between the layers of each network. This will let the network have fewer parameters whilst
still being capable of producing a desirable accuracy. The discriminator is similar to a CNN
with a binary classifier, where only wanted information is kept and the rest discarded. The
generator however uses the "transpose" of the convolutional operator [10]. This means that
information and detail is added continuously to the sampled noise z, when traversing the
generative network. At the output layer, when an image is generated, it has all the detail,
textures, lighting and object position that makes it realistic. The main function for discard-
ing information in a CNN happens in the pooling layer, however taking the inverse of the
pooling layer is not possible as most pooling functions are not invertible. An approach that
has proven to be noteworthy is called "un-pooling" by Dosovitskiy et al. [34]. The approach
means to take the inverse of the max-pooling under simplified conditions: For starters, the
stride of the max-pooling is constrained by the width of the pooling kernel. Additionally,
the maximum input is assumed to be in the upper-left corner within each pooling kernel and
all non-max inputs are assumed to be 0. Even though the mentioned conditions are strict
and could be considered improbable, they allow the max-pooling operator to be inverted.
The layers in the network learns to compensate for the unusual output from the un-pooling
approach and the total result generated by the model becomes visually pleasing [10].

The traditional GAN model poses a problem of not guaranteeing that the generated data
converges towards a desirable domain, but rather produces a solution which is capable of
fooling the discriminator D. Ian Goodfellow et. al. [35] recognized this and proposed an
extension of their model in future work, which includes a condition x as input to the generator
G, along with a noise vector z, and the discriminator D. The conditional input x can be
any kind of auxiliary information [36] but requires to have some correspondence to training
examples y i.e. paired data. Multiple problems in image processing can be thought of as
"translating" an input image into a corresponding output image. This problem is also known
as image-to-image translation where x becomes an input image which determines the loss
between the generated image G(x, z) and input from the training data y:

LcGAN(G, D) = Ex,y[logD(x, y)] + Ex,z[log(1´D(x, G(x, z))] (2.19)
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2.5.1 CycleGAN

CycleGAN is an extension of the GAN architecture but here two generator- and two discrim-
inator models are trained simultaneously, focusing on different domains. The idea is that an
image generated by the first generator can serve as input to the second generator and the
output from the second generator should look like the original image. The method enables
training with unpaired data from different domains and can be applied to many areas of use
such as style transfer, object transfiguration, season transfer and photograph enhancement.

A disadvantage with conditional GAN model is that the training data requires matching
pairs, txi, yiu

N
i=1. For example, this could be photos of one scene but under different weather-

or lighting conditions. Zhu et al. [6] proposes an unsupervised image translation model, that
learns a mapping G : X Ñ Y between the two domains X and Y and couple it with the inverse
mapping F : Y Ñ X. This exploit introduces a "cycle consistency", as seen in Figure 2.12,
which enables the use of unpaired data: txiu

N
i=1 P X and tyju

M
j=1 P Y. The cycle consistency

also solves another problem. The traditional mapping G : X Ñ Y does not guarantee that the
input x and output y are paired up in a meaningful way, the same distribution over ŷ can be
induced by infinitely many mappings G. This can lead to mode collapse i.e. where all input
images map to the same output image and the optimization fails to make progress. To solve
this problem a cycle-consistency loss is introduced, making the translation cycle consistent.
The loss encourages F(G(x)) « X and G(F(y)) « Y, meaning that G and F should be inverses
of each other. The cycle consistency loss is then combined with adversarial loss to achieve
good translation.

Figure 2.12: An overview of the CycleGAN model. The model is composed of two mappings G :
X Ñ Y and F : Y Ñ X and two discriminators DY and DX . DY encourages G to translate X into a
indistinguishable result of the target domain Y while DX tries to do the same for mapping F.

Adversarial loss

The adversarial loss is applied to both mapping functions, to match the distribution of gener-
ated images to the distribution of the data in the target domain [6]. The function G : X Ñ Y
is expressed as:

min
G

max
DY

LGAN(G, DY, X, Y) = Ey„pdata(y) [logDY(y)] + Ex„pdata(x) [log(1´DY(G(x))] (2.20)

where the discriminator DY tries to distinguish between fake samples G(x) and real samples
y. This encourages G to produce results that are indistinguishable from the real samples. The
same adversarial loss function is also applied to the inverse mapping F discriminator DX ,
resulting in minF maxDX LGAN(F, DX , Y, X).
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Cycle consistency loss

The adversarial loss alone cannot guarantee that the learned mappings can translate an
individual sample xi to a desirable output yi, which motivates the inclusion of the cycle-
consistency. This means for each training sample xi from domain X should be able to trans-
late and be brought back to the original domain in one cycle i.e. x Ñ G(x) Ñ F(G(x)) « x.
This motivated Jun-Yan Zhu et al. [6] to include a cycle-consistency loss to help incentivize
this behavior:

Lcyc(G, F) = Ex„pdata(x) [‖ F(G(x))´ x ‖1] + Ey„pdata(y) [‖ G(F(y))´ y ‖1] (2.21)

The overall adversarial loss is the sum of the two equations:

L(G, F, DX , DY) = LGAN(G, DY, X, Y) + LGAN(F, DX , Y, X) + λLcyc(G, F) (2.22)

where λ in the last term controls the relative importance between the two loss functions.

2.6 Related works

CNNs are being used in many state-of-the-art applications which requires image classifica-
tion or object recognition. The reason for CNN’s success when it comes to image classification
is because of its capability of extracting features in images and connecting these features to
the different labels provided. For instance, some CNNs have achieved beyond human-level
object classification, as GoogLeNet displayed when winning ILSVRC 2014 [37]. The task
presented was to categorise images into one of 1000 leaf-node categories in the ImageNet
catalogue. Other areas where CNNs have been successful is in both video surveillance and
autonomous driving, where classifying the weather proven to be an important step to achieve
a better overall performance of the respective systems [2, 3].

2.6.1 Related works on weather classification

Elhoseiny et al. [38] studied the use of CNNs for weather classification tasks. Their approach
of using a CNN outperformed previous state of the art methods, e.g. support vector machine
(SVM) and Adaboost, with a normalized classification accuracy of 82.2% instead of 53.1%. In
their work they analyzed the recognition performance for both pretrained ImageNet CNN
and Weather trained CNN.

Zhu et al. [39] used a CNN to recognize extreme weather conditions on their dataset Weath-
erDataset with 16 635 images including labels: sunny, rainstorm, blizzard and fog. They split
their data by assigning 80% to a training set and 20% of the images to a test set. In their work
they experimented on three network structures: GoogLeNet, AlexNet and modified AlexNet,
where GoogLeNet performed with an accuracy of 94.5% with fine-tuning parameters.

Guerra et al. [4] explored the possibility of using superpixel masks as a form of data augmen-
tation to improve the performance of a multi-class weather classifier. In their work they also
created an open source dataset called RFS, containing images of weather types, cloudy, foggy,
rainy, snowy and sunny, as a contribution to future work in the field of computer vision. The
images in the dataset contains the Creative Commons licence and are retrieved from Flickr,
Pixabay and Wikimedia Commons. In their work they compared ten classification models,
including: CaffeNet, PlacesCNN and variations of ResNet and VGG. The classifier model that
had the best overall performance for all the settings of their superpixel masks was ResNet50.

Di Lin et al. [40] proposed a deep learning framework called region selection and cuncurrency
model (RSCM) which uses regional cues for weather prediction. They evaluated their RSCM
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model on a multi-class weather dataset. In their work they used a VGG-16 model pre-trained
on ImageNet classification, which serves as the CNN architecture in their model, RSCM. They
further mention that without pre-training, their network yields a performance drop of 9.1%.

With the success of using CNN-models for image classification tasks (including weather im-
ages) in previous works this type of classifier is used. More specifically, ResNet50 is used as
it is a model with good performance overall for weather classification tasks, described in the
work by Guerra et al. [4]. Transfer learning with ImageNet is also investigated, to see how
the performance of the ResNet50 classifier can be improved.

2.6.2 Related works on image synthesis and imbalanced data

Zhe Li et al. [41] proposed a data augmentation method using deep convolution generative
adversarial networks (DCGAN) to balance imbalanced data. They claim that most classifica-
tion algorithms only perform optimally when the number of samples of each class is roughly
the same and that weather datasets often are imbalanced due to sunny days being more com-
mon than rainy, snowy or hazy days. To measure the performance of their DCGAN they
used a CNN model as a classifier, VGG16. The experiments showed that their GAN-based
data augmentation techniques can lead to improvements in distribution integrity and margin
clarity between labels.

Giovanni Mariani et al. [42] proposed a balancing GAN (BAGAN) as an augmentation tool
to balance imbalanced dataset. They mention that balancing a dataset is a challenge because
the few images in underrepresented labels may not be enough to train a GAN, but overcame
this by including all available images from the minority and majority labels. Their generative
model learns useful features from labels with more images and uses these to generate images
for labels with fewer images. The datasets used were MNIST, CIFAR-10, Flowers (different
labels of flowers) and GTSRB (traffic signs). For evaluation, they used a ResNet18 classifier,
and compared BAGAN to other state-of-the-art GANs and showed that their model generates
images with higher quality when trained on an imbalanced dataset.

As for balancing imbalanced datasets, various GANs have been used to tackle this issue.
However, DCGAN performs image synthesis from random vector rather than image-to-
image translation which can be a limiting factor. DCGAN does not consider image-to-image
translation with unpaired data. Since Zhe Li et al. [41] showed success in their work, it is
therefore worth investigating CycleGANs capabilities of performing a similar task, as it does
not put the same restraints on the data collection. The same reasoning can be said for BAGAN
versus CycleGAN, as BAGAN requires the data in both the source domain and target domain
to be paired or under alignment [43].

2.7 Evaluation with CNN classifier

The performance of a classifier can be evaluated using a number of metrics, where the most
common are accuracy, precision, recall and F1-score. The predicted labels from the classifier are
directly measured against the actual label of the input and doing so over the entirety of a test
set determines the performance of the classifier.

2.7.1 Precision, Recall, F1-Score and Accuracy

The precision of a said label is the number of true positives (TP) divided by the total number of
elements labelled as a belonging to the positive class. Recall in the context of classification is the
number of TP divided by the total number of elements that actually belong to the actual positive
class. This means for classifying sunny weather, true positive are images that contain sunny
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weather and false positive are images that are classified as sunny but contain another weather
phenomenon. Other two important terminologies are false positive (FP) and false negative (FN):

Precision =
TP

TP + FP
(2.23)

Recall =
TP

TP + FN
(2.24)

To get a balanced estimate of how well each label performs, the F1-score gives a good estimate
as it includes the harmonic mean of the two measurements. The F1-score is most useful when
dealing with imbalanced samples of data, whilst the opposite is true for accuracy. Accuracy
is the sum of true positives and true negatives divided by the total number of samples and is
an overall estimate of how well the classifier performs over all classes:

F1 = 2 ¨
precision ¨ recall

precision + recall
(2.25)

Accuracy =
TP + TN

TP + TN + FP + FN
(2.26)
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3 Method

This chapter conveys the different approaches used to answer the research questions pre-
sented Chapter 1. The thesis work include varying the label distribution in the training set
for both the classifiers and CycleGAN model, as well as the inclusion of CycleGAN synthe-
sized images in the training set for the classifiers. Furthermore, the thesis work also include
insight in an alternative approach of normalizing signal inside both generators GX and GY
in the CycleGAN model. This chapter also include a description and motivation behind the
use of various training parameters and frameworks as well as information about the dataset
used to train all networks.

3.1 Frameworks and hardware

The scripts used for preprocessing is implemented in Python using the libraries Tensorflow1

and Keras2. Tensorflow is a library that focuses on machine learning applications, especially
deep learning. Keras is a library which provides an interface for Tensorflow in Python for
deep learning in neural networks. The CNN classifier used is a pre-built model available from
the Keras API called ResNet50 which can run on both the CPU and GPU. The CycleGAN used
in this work comes from the developers Zhenliang He and Holly Grimm, who implemented
the network3 in Tensorflow 2 from the original implementations [6]. Tensorflow GPU was
used to run CycleGAN on the graphics card, which gives massive parallelism and speedup
in the training stage. CUDA-toolkit and cuDNN, created by NVIDIA, is required to perform
deep learning on the graphics card. The training was performed on two computers using an
NVIDIA GeForce GTX 1070 and NVIDIA GeForce RTX 3060 Ti.

3.2 Data

The dataset used to train all classifier instances and the CycleGAN was the RFS dataset. The
RFS dataset is an open source dataset made by Guerra et al. [4] and Lu et al. [44], with the
intent to contribute to future efforts in the field of computer vision. The name of the dataset

1https://www.tensorflow.org/
2https://keras.io/
3https://github.com/LynnHo/CycleGAN-Tensorflow-2
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(a) Cloudy (b) Foggy (c) Rainy (d) Sunny

Figure 3.1: Sample images from four different labels in the RFS dataset.

is an acronym of the included weather labels rain, fog and snow, but also includes the labels
sunny and cloudy as well. All images were retrieved from Flick, Pixabay and Wikimedia
Commons under Creative Commons license, using their respective labels as search tags in
different languages as well as search terms of various locations. The number of images is
1100 for each of its labels, resulting in a total of 5500 images with varying sizes. Figure 3.1
shows a sample of the images contained in the RFS dataset. The reason for using the RFS
dataset is that it contained numerous quality images in various environments and settings
while including all targeted labels for this work. All labels but the cloudy label were kept
from the dataset for all experiments, as it is a label that could overlap with the other labels,
sunny, snowy, rainy and foggy while also not being a target label. The CycleGAN model
requires two labels to represent the two domains X and Y. For this work it was decided to
use the sunny label as a base class (domain X), as it is often simpler to add fog or snow to a
sunny image than predicting how the sky would look behind a thick layer of fog. The sunny
label is also often a well represented label in weather datasets found online.

The folder structure in the RFS dataset determines which image correspond to which label.
Naturally, the Foggy folder contains images where fog is overwhelmingly present and so on
for each label.

RFS
Foggy

0001.jpg
0002.jpg

Rainy
Snowy
Sunny

Figure 3.2: The folder structure of the RFS dataset.

3.3 Preprocessing

Prior to any work, the RFS dataset containing 1100 images in each label, were cropped to
a size of 256 ˆ 256 pixels, mainly because the time it takes to train CycleGAN is directly
correlated to the number and size of the images in the training set. The dataset was then split
into a training set and a test set. For this work, the split ratio was 8:2 used (as Goodfellow et
al. [10] recommended being a good starting point) i.e. the training- and test set contains 80%
(880 images) and 20% (220 images) of all images respectively. The test set was then set aside
and only used as unseen data, to evaluate the performance of the classifier.

The training set was then used to train both the CycleGAN to synthesize new images and
also the classifier under different conditions. To evaluate how CycleGAN performs under
different distributions of data, the training set was reduced in steps of 25% (i.e. the training
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Figure 3.3: Scheme for dividing data into training- test- and validation set for this work. First the RFS
dataset was split into a training- and test set using a split ratio of 8:2. The training set was then further
divided into training- and test set for CycleGAN and training- and validation set using a ratio of 9:1.
The ratios was chosen according to Goodfellows recommendations and how Zhu et al. set up their
training in the official CycleGAN paper.

set contained 75%, 50% and 25% of the original data). Removing images for each step was
done at random, this also means that the set of images for each step is also a subset to the
previous one. To avoid bias, the CycleGAN model and classifier were trained on the same set
of images in each step, with the inclusion of augmented images to make up for imbalanced
data for the classifier. For each step, the training set was further divided into a training- and
test set for CycleGAN and training- and validation set for the classifier using a ratio of 9:1
(similar to how Zhu et al. [6] conducted their training and according to recommendations by
Goodfellow et al. [10]). For CycleGAN, the test set exists to ensure that the model is capable of
generalizing a solution, and to ensure that the training process proceeds as wanted, without
inverting colors or creating artefacts. When training the classifier, the training set was split
into mini-bathes of size 16 at random. All mini-batches were also shuffled after each epoch
to avoid bias during training of the classifier. The scheme can be seen in Figure 3.3.

3.3.1 Data augmentation

Data augmentation is often used in classification tasks to increase the size of the dataset arti-
ficially, which in theory could lead to improved performance as the classifier has more data
to train on (overfitting). The technique can also help balance imbalanced datasets, by increas-
ing the amount of images in the underrepresented labels. There exists a number of different

23



3.4. CNN classifier

methods which can be used to augment image data. Commonly used image augmentation
techniques which transforms the input image includes:

• Zooming, where some portion of the image are enlarged

• Shearing, deforming a rectangle (the image) into a parallelogram

• Rotation, random amount of rotation clockwise or anti-clockwise

• Shifting, moving the image vertically or horizontally

• Flipping, making the image look like it has been mirrored, either vertically or horizon-
tally

All mentioned augmentation techniques were applied to a random number of images
(enough to balance the dataset) at random strength, using Keras-Tensorflow’s preprocessing-
functions. In cases where the image is translated as a result from the augmentation tech-
niques, points outside the boundary of the image appear with no pixel data and must be
filled. Different filling modes which exists in ImageDataGenerator are: constant, nearest,
reflect and wrap. For augmentation in this project, reflect was used, which mirrors the image
that is still in the boundary, thus filling the points with pixel values instead of leaving black
pixels around the augmented image.

More image augmentation techniques that adjust the pixel values in the image also exists,
including: saturation, contrast, hue, brightness and noise; adding random values to random
pixels.

3.4 CNN classifier

In order to measure how well the CycleGAN model was capable of producing the targeted
weather labels from the sunny label, a CNN classifier was trained using various methods
discussed later in this chapter. For multi-weather classification, researchers has tested and
compared a number of convolutional neural networks, such as VGG-16 (and 19), AlexNet and
ResNet50 (and 110) [4, 45] where ResNet50 seemed like a decent fit for two reasons: First, the
ResNet50 model had achieved amongst the best (or best) result on the RFS dataset while also
being part of the Keras API4 (meaning it was not necessary to implement the network from
scratch). Second, the ResNet50 model has fewer trainable parameters (27M) in comparison to
its closest competitors VGG-165 (140M) and AlexNet (62M), although its much deeper. The
reason for ResNets success is because of its architecture.

The ResNet50 architecture proposed by He et al. [46] is a deep convolutional neural network,
which has 48 convolutional layers along with 1 max pooling layer and 1 average pooling
layer. The 50 layer deep network is one out of a family of residual networks, which uses
shortcut connections to help train deep networks that can extend up to thousands of layers
and help tackle the problem of degradation. A notorious problem for deep networks in gen-
eral, are vanishing (or exploding) gradients [47, 14]. These issues were addressed to a larger
degree using normalized initialization and intermediate normalization layers (layers which
normalizes the activation between hidden layers) [15, 48]. This however exposed the problem
of degradation: When training accuracy gets saturated and decreases as the depth increases.
This implies and that adding more layers to an already deep model leads to a higher training
error [46, 49]. This is an indication that all systems does not optimize similarly. Consider
two networks: A shallower network and its deeper counterpart. There should exist a solu-
tion where the added layers of the deeper network are identity mappings and the rest are

4https://keras.io/api/applications/resnet/#resnet50-function
5https://keras.io/api/applications/
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Figure 3.4: Deep residual framework: Shortcut connection which performs identity mapping.

the learned layers of the shallower network, which should prevent the deeper network from
producing a higher training error.

To find a desired underlying mapping from a stack of layers, He et al. [46] proposed a deep
residual learning framework, which explicitly lets the stacked layers to fit a residual map-
ping: Introducing shortcut connections which performs identity mappings. He et al. denotes
the residual mapping as H and let the nonlinear layers F (x), in a stack of layers, to fit the
mapping F(x) := H(x)´ x. The original mappings then becomes H(x) := F(x) + x as seen
in Figure 3.4. Their motivation is that it is easier to optimize the residual mapping (as the
residual can be pushed down to 0) than optimizing the original using none-linear layers. The
benefit of their solution is that shortcut connections does not require additional parameters
nor affect computational complexity while still being able to train a network end-to-end by
SGD using backpropagation.

3.4.1 Implementation of the classifier

The base model for ResNet50 was found in the Keras API. The weights in the network was
initialized to either ImageNet weights or random weights. An average pooling layer was
added in the output layer of the network with the call GlobalAveragePooling2D()(x)
followed by a fully connected layer with ReLu as the activation function Dense(2048,
activation=’relu’)(x). Finally, a logistic layer was added with the four classes: Foggy,
Rainy, Snowy, Sunny with the call Dense(4, activation=’softmax’)(x). The model
was compiled with the categorical cross entropy loss as the loss function, because the RFS
dataset include images in several labels. The adam optimizer was chosen as the optimizer
with a learning rate of either 0.0005 or 0.001 for ImageNet weights and random weights re-
spectively. See 3.1 for a table of the hyperparameters and their corresponding values.

Table 3.1: Hyperparameters used when training ResNet50 models.

Hyperparameters ResNet50
Learning rate 0.0005 or 0.001

Optimizer Adam
Output activation softmax

Batch size 16
Epochs 25

Trained parameters „ 27M
Runs for µ/σ calculations 5

Weight initialization ImageNet or random
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3.5 CycleGAN

The hyperparameters in CycleGAN were set to values according to Table 3.2. Those values
were default in the tensorflow implementation and some of the values were also found in the
appendix of the CycleGAN report, in the section Training details [6].

Table 3.2: Hyperparameters used when training CycleGAN models.

Hyperparameters CycleGAN
Learning rate 0.002

Epochs 200
Linear decay of learning rate after # epochs 100

Beta 0.5
Adversarial loss mode lsgan

Cycle loss weight 10
Identity loss weight 0

Pool size to store fake samples 50

3.5.1 Noise and droplet artefacts in generated images

A problem that often occurred when training CycleGAN was that the generated images con-
tained artifacts in the form of noise and extremely bright circles (droplets). Tero Karrass et al.
at NVIDIA proposed in StyleGAN2 [50], to remove instance normalization defined in 3.1 and
use weight demodulation in the convolution layers as a fix to the problem.

ytijk =
xtijk ´ µti
b

σ2
ti + ε

(3.1)

where k, j is the spatial dimensions, i the color channel and t the index of the image in the
batch. µ is a mean value and σ the standard deviation. ε is a small number [51]. Karass et al.
hypothesize that by creating a strong spike that dominates the image, in the form of a droplet,
the generator can scale the signal as it wants elsewhere. In other words, the artifact is a result
of the generator trying to sneak signal information past the instance normalization step. They
further support their hypothesis by finding that the droplet artifacts are completely gone
when removing the instance normalization step from the generator.

A block in StyleGAN consists of modulation, convolution and normalization. The modu-
lation scales the convolution weights, w1 = s ¨ w, meaning that each input feature map of
the convolution is scaled based on the incoming style [50]. Assumptions are made that in
CycleGAN there exists no style so therefore the scale s = 1 ñ w1 = w, making the scal-
ing/modulation step obsolete. Karass et al. further explain that the purpose of instance
normalization is to remove the effect of s from the convolutions output feature maps. How-
ever, they mention that this can be done more directly, after the modulation and convolution
step, by restoring the outputs back to unit standard deviation, presuming that the input acti-
vations are independent and identically distributed random variables. They achieve this by
scaling (demodulating) each output feature map j by 1/σj. In the implementation this is done
directly onto the convolution weights as follows:

w
2

i,j,k = w
1

i,j,k

/
d

ÿ

i,k

w12
i,j,k + ε (3.2)

where ε is a small number to avoid numerical issues, 1e´ 8 in this implementation.
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In the CycleGAN implementation in tensorflow, in the file module.py, five occurrences of
instance normalization was thus removed from the generator and six convolution operations
that the generator used were changed to a custom made convolution which used weight de-
modulation instead. The code for the weight demodulation were added in the call function
of Keras.layers.Conv layer, just before the convolution operation. By making this change
there were no longer any occurrences of noise or droplet artifacts which improved the overall
visual quality of the generated images drastically. Hereafter, the CycleGAN that uses weight
demodulation will be refered to as CycleGANWD.

3.6 Evaluating the CycleGAN images and classifiers

Evaluating the quality of synthesized images is a difficult problem [52]. Using a traditional
metric such as per pixel mean-squared error does not take the structures in images into con-
sideration and should therefore not be used as a measurement of determining the realism
of images in our case. A metric that does this are CNN classifiers, which predicts labels by
learning structures and patterns in the training data. In theory, if a CNN classifier were to
train on a combination of both real and synthesized images of poor quality, the performance
of the model should decrease as the percentage of synthesized images in the training data
increases. If the synthesized images are of good quality i.e. the quality is on par with real
images, the performance of the model should be unaffected.

The machine learning library scikit-learn [53] was used to calculate the metrics: precision, re-
call, f1-score and accuracy, using the function sklearn.metrics.classification_rep-
ort. The function sklearn.metrics.confusion_matrix was also used to get an
overview of the result for the classifier. To get a more credible result, the mean value was
calculated for the metrics, for a chosen amount of classification runs. The standard deviation
was also calculated, see Equation 3.3, to further identify if there were substantial change in
the values for the metrics between runs.

σ =

g

f

f

e

1
N

N
ÿ

i´1

(xi ´ µ)2, where µ =
1
N

N
ÿ

i=1

xi (3.3)

σ is the standard deviation, x a value of a metric in the ith classification run, N is the amount
of runs and µ the mean value for all runs.

3.7 Training

To evaluate how well the CycleGAN generated images can be interpreted as real and perform
as a image augmentation technique for imbalanced datasets, tests were conducted. The tests
included augmenting the RFS dataset using different image augmentation techniques and
comparing the evaluation metrics from the ResNet50 classifier for each case. To compare the
results of the various augmentation techniques, the ResNet50 classifier model was trained on
the RFS dataset without any augmentations nor removing samples from the training set, to
get a reference score for the evaluation metrics. The training set contained 792 images, the
validation set 88 images and test set 220 images.

3.7.1 Imbalanced datasets

Three methods were evaluated on their ability to balance imbalanced datasets to help im-
prove performance of an image classifier, classic image augmentation methods, CycleGAN
and CycleGANWD.
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However, before any classification three test scenarios were created where only 75%, 50%
and 25% of the images in a chosen label in the training set were kept, and the rest removed,
resulting in 660, 440 and 220 images remaining. The datasets in the three scenarios were
then augmented with either classic image augmentation, CycleGAN or CycleGANWD. As
a reference to these methods, a final method (hereafter referred to as Method 0) was evalu-
ated where the images were simply duplicated in the chosen label to restore balance. After
balancing the datasets for each test scenario, classification was done with ResNet50.

Method 1: Classic image augmentation

The training sets (660, 440, 220 images) were further divided into training sets (594, 396, 198
images) and validation sets (66, 44, 22 images) with a ratio of 9:1, for each test scenario. The
M number of images in the new training set were then supplemented with N augmented
images using the techniques described in Section 3.3.1, to balance the dataset up to 100% or
792 images. The images in the validation set was not augmented as it should represent real
world data.

Method 2: CycleGAN

Similar to Method 1, the images in the training set for the targeted label were supplemented,
but here CycleGAN generated images were used instead to balance the underrepresented
label. A CycleGAN was trained for each targeted label (foggy, snowy and rainy) and for each
test scenario

Method 3: CycleGANWD

The same as Method 2 was done here, with the exception that instance normalization was
removed, and the convolution operation in the generator block were replaced with a custom
convolution operation which included weight demodulation.
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4 Results

This chapter presents the results of the work, showing both the synthesized images and clas-
sification results for different distributions of imbalanced data. The training times for the
CycleGANs ranged from 22-27 hours while the training time for a set of five classifiers took
approximately 1 hour.

4.1 CycleGAN generated images

This section shows the generated image from both CycleGAN and CycleGANWD using the
Sunny label as source domain. Figure 4.1 shows the cycle translation to the Foggy label and
back. In Figure 4.2, 4.3 and 4.4 images of better quality are shown when translating to the
Foggy label for 75%, 50% and 25% of training data. Figure 4.5 and 4.6 shows the generated
images when translating to the Snowy and Rainy label respectivly. Finally, images of worse
quality are shown in Figure 4.7, 4.8 and 4.9 when translating to the Foggy label.

Figure 4.1: Illustration of the cycle translation which makes image synthesizing using unpaired data
possible. The three images display the original image in the source domain (left), the translated image
to the Foggy label (middle) and translated image back to the source domain (right).
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4.1. CycleGAN generated images

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.2: Translated images from sunny to foggy using CycleGANWD (a)-(f) and CycleGAN (g)-(l)
with 75% of training data. The images are picked to showcase images of better quality.
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4.1. CycleGAN generated images

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.3: Translated images from sunny to foggy using CycleGANWD (a)-(f) and CycleGAN (g)-(l)
with 50% of training data. The images are picked to showcase images of better quality.
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4.1. CycleGAN generated images

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.4: Translated images from sunny to foggy using CycleGANWD (a)-(f) and CycleGAN (g)-(l)
with 25% of training data. The images are picked to showcase images of better quality.
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4.1. CycleGAN generated images

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.5: Translated images from sunny to snowy using CycleGANWD (a)-(f) and CycleGAN (g)-(l)
with 75% of training data. The images are picked to showcase images of better quality.
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4.1. CycleGAN generated images

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.6: Translated images from sunny to rainy using CycleGANWD (a)-(f) and CycleGAN (g)-(l)
with 75% of training data.
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4.1. CycleGAN generated images

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.7: Translated images from sunny to foggy using CycleGANWD (a)-(f) and CycleGAN (g)-(l)
with 75% of training data. The images are picked to showcase images of worse quality.
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4.1. CycleGAN generated images

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.8: Translated images from sunny to foggy using CycleGANWD (a)-(f) and CycleGAN (g)-(l)
with 50% of training data. The images are picked to showcase images of worse quality.

36



4.1. CycleGAN generated images

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.9: Translated images from sunny to foggy using CycleGANWD (a)-(f) and CycleGAN (g)-(l)
with 25% of training data. The images are picked to showcase images of worse quality.
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4.2 Classifier results

The following section presents the classification results for all models. Each table presents
the average numerical results and standard deviations for varying numbers of real training
samples, using the metrics: precision, recall, F1-score and accuracy. Tables 4.1, 4.2, 4.3 and 4.4
shows the performance of translating to the Foggy label when using the full dataset, 75%, 50%
and 25% of the training data and when using ImageNet weight initialization. In Table 4.5 and
4.6 the performance is shown when translating to the Snowy and Rainy label using ImageNet
weights. Furthermore, Tables 4.7,4.8, 4.9, 4.10, 4.11 and 4.12 shows the performance when
using random weight initialization instead. The average accuracy and standard deviation is
summarized and displayed in Figure 4.10.

Reference and imbalanced datasets with ImageNet weight initialization

Table 4.1: 100% of training data in all labels

Mean ˘ Standard deviation
Method Label Precision Recall F1-score Accuracy

Reference:
Full dataset

Foggy 0.894˘ 0.064 0.894˘ 0.062 0.889˘ 0.021
Rainy 0.847˘ 0.076 0.775˘ 0.072 0.805˘ 0.048 0.852˘ 0.061
Snowy 0.927˘ 0.042 0.817˘ 0.196 0.849˘ 0.123
Sunny 0.818˘ 0.136 0.921˘ 0.048 0.856˘ 0.070

Table 4.2: 75% of training data in the Foggy label

Mean ˘ Standard deviation
Method Label Precision Recall F1-score Accuracy

Method 0

Foggy 0.941˘ 0.021 0.851˘ 0.038 0.893˘ 0.013
Rainy 0.775˘ 0.018 0.922˘ 0.014 0.842˘ 0.006 0.881˘ 0.008
Snowy 0.931˘ 0.024 0.871˘ 0.036 0.899˘ 0.010
Sunny 0.911˘ 0.034 0.879˘ 0.031 0.894˘ 0.009

Method 1:
Strd Augment

Foggy 0.917˘ 0.019 0.879˘ 0.055 0.896˘ 0.025
Rainy 0.735˘ 0.145 0.894˘ 0.034 0.795˘ 0.090 0.842˘ 0.092
Snowy 0.923˘ 0.034 0.753˘ 0.252 0.803˘ 0.206
Sunny 0.898˘ 0.054 0.843˘ 0.090 0.867˘ 0.058

Method 2:
CycleGAN

Foggy 0.878˘ 0.043 0.894˘ 0.048 0.884˘ 0.015
Rainy 0.858˘ 0.074 0.793˘ 0.083 0.817˘ 0.033 0.867˘ 0.023
Snowy 0.899˘ 0.064 0.905˘ 0.049 0.898˘ 0.021
Sunny 0.869˘ 0.074 0.876˘ 0.106 0.864˘ 0.039

Method 3:
CycleGANWD

Foggy 0.921˘ 0.006 0.873˘ 0.029 0.896˘ 0.016
Rainy 0.787˘ 0.095 0.894˘ 0.070 0.829˘ 0.035 0.877˘ 0.027
Snowy 0.923˘ 0.040 0.895˘ 0.068 0.906˘ 0.030
Sunny 0.930˘ 0.050 0.846˘ 0.078 0.882˘ 0.026
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Table 4.3: 50% of training data in the Foggy label

Mean ˘ Standard deviation
Method Label Precision Recall F1-score Accuracy

Method 0

Foggy 0.918˘ 0.036 0.844˘ 0.074 0.876˘ 0.026
Rainy 0.820˘ 0.059 0.837˘ 0.078 0.823˘ 0.028 0.868˘ 0.022
Snowy 0.902˘ 0.054 0.894˘ 0.081 0.893˘ 0.032
Sunny 0.871˘ 0.079 0.899˘ 0.051 0.880˘ 0.030

Method 1:
Strd Augment

Foggy 0.887˘ 0.070 0.859˘ 0.046 0.870˘ 0.031
Rainy 0.832˘ 0.044 0.810˘ 0.105 0.815˘ 0.049 0.853˘ 0.052
Snowy 0.857˘ 0.132 0.915˘ 0.038 0.876˘ 0.067
Sunny 0.898˘ 0.056 0.829˘ 0.124 0.853˘ 0.062

Method 2:
CycleGAN

Foggy 0.875˘ 0.063 0.867˘ 0.072 0.866˘ 0.026
Rainy 0.834˘ 0.091 0.798˘ 0.124 0.803˘ 0.054 0.847˘ 0.035
Snowy 0.891˘ 0.070 0.843˘ 0.131 0.855˘ 0.057
Sunny 0.844˘ 0.093 0.879˘ 0.047 0.857˘ 0.044

Method 3:
CycleGANWD

Foggy 0.905˘ 0.024 0.864˘ 0.019 0.883˘ 0.015
Rainy 0.717˘ 0.079 0.906˘ 0.059 0.795˘ 0.026 0.830˘ 0.008
Snowy 0.893˘ 0.109 0.818˘ 0.101 0.842˘ 0.041
Sunny 0.918˘ 0.060 0.732˘ 0.111 0.805˘ 0.042

Table 4.4: 25% of training data in the Foggy label

Mean ˘ Standard deviation
Method Label Precision Recall F1-score Accuracy

Method 0

Foggy 0.926˘ 0.063 0.760˘ 0.069 0.831˘ 0.048
Rainy 0.752˘ 0.058 0.877˘ 0.026 0.809˘ 0.045 0.843˘ 0.049
Snowy 0.878˘ 0.085 0.874˘ 0.085 0.870˘ 0.056
Sunny 0.880˘ 0.071 0.859˘ 0.149 0.856˘ 0.073

Method 1:
Strd Augment

Foggy 0.844˘ 0.127 0.825˘ 0.085 0.822˘ 0.042
Rainy 0.682˘ 0.159 0.830˘ 0.107 0.743˘ 0.134 0.785˘ 0.102
Snowy 0.844˘ 0.131 0.681˘ 0.292 0.716˘ 0.236
Sunny 0.903˘ 0.053 0.806˘ 0.120 0.844˘ 0.050

Method 2:
CycleGAN

Foggy 0.925˘ 0.008 0.850˘ 0.032 0.886˘ 0.014
Rainy 0.861˘ 0.026 0.847˘ 0.035 0.853˘ 0.020 0.884˘ 0.017
Snowy 0.860˘ 0.056 0.941˘ 0.020 0.897˘ 0.023
Sunny 0.905˘ 0.030 0.899˘ 0.044 0.901˘ 0.014

Method 3:
CycleGANWD

Foggy 0.902˘ 0.065 0.855˘ 0.045 0.875˘ 0.025
Rainy 0.832˘ 0.051 0.835˘ 0.079 0.829˘ 0.029 0.865˘ 0.027
Snowy 0.888˘ 0.037 0.885˘ 0.082 0.883˘ 0.036
Sunny 0.869˘ 0.065 0.885˘ 0.063 0.873˘ 0.025

39



4.2. Classifier results

Table 4.5: 75% of training data in the Snowy label

Mean ˘ Standard deviation
Method Label Precision Recall F1-score Accuracy

Method 2:
CycleGAN

Foggy 0.854˘ 0.123 0.836˘ 0.098 0.832˘ 0.053
Rainy 0.823˘ 0.075 0.705˘ 0.137 0.744˘ 0.071 0.816˘ 0.042
Snowy 0.891˘ 0.054 0.809˘ 0.047 0.848˘ 0.048
Sunny 0.777˘ 0.098 0.913˘ 0.039 0.834˘ 0.042

Method 3:
CycleGANWD

Foggy 0.904˘ 0.047 0.900˘ 0.036 0.900˘ 0.008
Rainy 0.868˘ 0.049 0.774˘ 0.084 0.813˘ 0.029 0.863˘ 0.022
Snowy 0.883˘ 0.070 0.869˘ 0.106 0.869˘ 0.052
Sunny 0.837˘ 0.080 0.911˘ 0.056 0.867˘ 0.028

Table 4.6: 75% of training data in the Rainy label

Mean ˘ Standard deviation
Method Label Precision Recall F1-score Accuracy

Method 2:
CycleGAN

Foggy 0.826˘ 0.072 0.869˘ 0.054 0.846˘ 0.054
Rainy 0.830˘ 0.026 0.735˘ 0.085 0.777˘ 0.043 0.829˘ 0.039
Snowy 0.897˘ 0.025 0.821˘ 0.069 0.855˘ 0.027
Sunny 0.789˘ 0.097 0.892˘ 0.025 0.838˘ 0.049

Method 3:
CycleGANWD

Foggy 0.864˘ 0.054 0.903˘ 0.039 0.881˘ 0.017
Rainy 0.857˘ 0.016 0.769˘ 0.056 0.809˘ 0.025 0.865˘ 0.019
Snowy 0.869˘ 0.050 0.921˘ 0.027 0.893˘ 0.021
Sunny 0.879˘ 0.029 0.865˘ 0.036 0.871˘ 0.021
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Reference and imbalanced datasets with random weight initialization

Table 4.7: 100% of training data in all labels

Mean ˘ Standard deviation
Method Label Precision Recall F1-score Accuracy

Reference:
Full dataset

Foggy 0.904˘ 0.036 0.854˘ 0.100 0.873˘ 0.049
Rainy 0.830˘ 0.098 0.699˘ 0.168 0.735˘ 0.077 0.828˘ 0.030
Snowy 0.849˘ 0.103 0.882˘ 0.103 0.854˘ 0.051
Sunny 0.807˘ 0.095 0.877˘ 0.061 0.836˘ 0.054

Table 4.8: 75% of training data in the Foggy label

Mean ˘ Standard deviation
Method Label Precision Recall F1-score Accuracy

Method 0

Foggy 0.896˘ 0.028 0.846˘ 0.086 0.867˘ 0.042
Rainy 0.798˘ 0.073 0.833˘ 0.070 0.809˘ 0.026 0.846˘ 0.033
Snowy 0.909˘ 0.091 0.801˘ 0.102 0.843˘ 0.059
Sunny 0.829˘ 0.057 0.904˘ 0.047 0.863˘ 0.029

Method 1:
Strd Augment

Foggy 0.893˘ 0.038 0.862˘ 0.038 0.876˘ 0.006
Rainy 0.789˘ 0.058 0.808˘ 0.090 0.792˘ 0.028 0.851˘ 0.014
Snowy 0.903˘ 0.036 0.865˘ 0.035 0.882˘ 0.019
Sunny 0.852˘ 0.079 0.871˘ 0.035 0.858˘ 0.030

Method 2:
CycleGAN

Foggy 0.870˘ 0.111 0.842˘ 0.075 0.846˘ 0.040
Rainy 0.744˘ 0.038 0.815˘ 0.068 0.775˘ 0.033 0.822˘ 0.035
Snowy 0.933˘ 0.042 0.735˘ 0.189 0.802˘ 0.124
Sunny 0.815˘ 0.047 0.895˘ 0.052 0.850˘ 0.012

Method 3:
CycleGANWD

Foggy 0.845˘ 0.079 0.892˘ 0.056 0.863˘ 0.027
Rainy 0.806˘ 0.012 0.782˘ 0.073 0.792˘ 0.038 0.838˘ 0.039
Snowy 0.917˘ 0.026 0.802˘ 0.092 0.853˘ 0.062
Sunny 0.838˘ 0.127 0.876˘ 0.050 0.847˘ 0.055
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Table 4.9: 50% of training data in the Foggy label

Mean ˘ Standard deviation
Method Label Precision Recall F1-score Accuracy

Method 0

Foggy 0.795˘ 0.142 0.880˘ 0.054 0.824˘ 0.085
Rainy 0.771˘ 0.075 0.725˘ 0.136 0.744˘ 0.101 0.802˘ 0.092
Snowy 0.863˘ 0.085 0.834˘ 0.051 0.846˘ 0.057
Sunny 0.866˘ 0.106 0.767˘ 0.239 0.774˘ 0.166

Method 1:
Strd Augment

Foggy 0.876˘ 0.066 0.847˘ 0.089 0.850˘ 0.024
Rainy 0.780˘ 0.056 0.855˘ 0.047 0.813˘ 0.013 0.845˘ 0.019
Snowy 0.873˘ 0.102 0.859˘ 0.091 0.856˘ 0.044
Sunny 0.921˘ 0.029 0.819˘ 0.036 0.866˘ 0.010

Method 2:
CycleGAN

Foggy 0.859˘ 0.085 0.833˘ 0.079 0.843˘ 0.065
Rainy 0.780˘ 0.095 0.821˘ 0.060 0.796˘ 0.062 0.820˘ 0.057
Snowy 0.775˘ 0.062 0.900˘ 0.032 0.831˘ 0.037
Sunny 0.927˘ 0.026 0.727˘ 0.121 0.807˘ 0.075

Method 3:
CycleGANWD

Foggy 0.918˘ 0.050 0.825˘ 0.069 0.865˘ 0.023
Rainy 0.744˘ 0.126 0.857˘ 0.087 0.782˘ 0.054 0.840˘ 0.041
Snowy 0.908˘ 0.032 0.840˘ 0.069 0.870˘ 0.033
Sunny 0.885˘ 0.056 0.838˘ 0.108 0.853˘ 0.049

Table 4.10: 25% of training data in the Foggy label

Mean ˘ Standard deviation
Method Label Precision Recall F1-score Accuracy

Method 0

Foggy 0.932˘ 0.031 0.715˘ 0.104 0.803˘ 0.058
Rainy 0.662˘ 0.109 0.822˘ 0.156 0.712˘ 0.069 0.757˘ 0.088
Snowy 0.863˘ 0.103 0.683˘ 0.209 0.738˘ 0.118
Sunny 0.721˘ 0.114 0.808˘ 0.214 0.758˘ 0.164

Method 1:
Strd Augment

Foggy 0.812˘ 0.115 0.847˘ 0.045 0.821˘ 0.049
Rainy 0.672˘ 0.137 0.747˘ 0.210 0.701˘ 0.166 0.795˘ 0.076
Snowy 0.888˘ 0.073 0.768˘ 0.154 0.814˘ 0.100
Sunny 0.861˘ 0.035 0.816˘ 0.095 0.834˘ 0.050

Method 2:
CycleGAN

Foggy 0.918˘ 0.028 0.783˘ 0.072 0.842˘ 0.033
Rainy 0.747˘ 0.056 0.864˘ 0.060 0.797˘ 0.020 0.840˘ 0.012
Snowy 0.856˘ 0.058 0.894˘ 0.057 0.871˘ 0.014
Sunny 0.900˘ 0.075 0.821˘ 0.071 0.853˘ 0.029

Method 3:
CycleGANWD

Foggy 0.883˘ 0.061 0.817˘ 0.084 0.843˘ 0.026
Rainy 0.809˘ 0.080 0.745˘ 0.120 0.766˘ 0.061 0.820˘ 0.049
Snowy 0.852˘ 0.147 0.845˘ 0.125 0.829˘ 0.075
Sunny 0.815˘ 0.022 0.873˘ 0.102 0.839˘ 0.047
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Table 4.11: 75% of training data in the Snowy label

Mean ˘ Standard deviation
Method Label Precision Recall F1-score Accuracy

Method 2:
CycleGAN

Foggy 0.912˘ 0.034 0.818˘ 0.086 0.859˘ 0.042
Rainy 0.830˘ 0.076 0.769˘ 0.085 0.791˘ 0.033 0.831˘ 0.032
Snowy 0.901˘ 0.034 0.805˘ 0.110 0.844˘ 0.054
Sunny 0.755˘ 0.091 0.932˘ 0.023 0.830˘ 0.048

Method 3:
CycleGANWD

Foggy 0.875˘ 0.046 0.866˘ 0.017 0.870˘ 0.024
Rainy 0.748˘ 0.067 0.875˘ 0.055 0.803˘ 0.038 0.843˘ 0.038
Snowy 0.900˘ 0.044 0.832˘ 0.098 0.859˘ 0.050
Sunny 0.901˘ 0.053 0.801˘ 0.090 0.843˘ 0.044

Table 4.12: 75% of training data in the Rainy label

Mean ˘ Standard deviation
Method Label Precision Recall F1-score Accuracy

Method 2:
CycleGAN

Foggy 0.905˘ 0.016 0.854˘ 0.047 0.878˘ 0.026
Rainy 0.809˘ 0.096 0.844˘ 0.069 0.823˘ 0.026 0.863˘ 0.021
Snowy 0.854˘ 0.066 0.919˘ 0.040 0.883˘ 0.031
Sunny 0.905˘ 0.037 0.835˘ 0.031 0.867˘ 0.014

Method 3:
CycleGANWD

Foggy 0.880˘ 0.041 0.887˘ 0.067 0.881˘ 0.018
Rainy 0.818˘ 0.039 0.796˘ 0.078 0.803˘ 0.020 0.856˘ 0.010
Snowy 0.867˘ 0.075 0.882˘ 0.058 0.870˘ 0.018
Sunny 0.884˘ 0.032 0.860˘ 0.050 0.870˘ 0.014
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(a)

(b)

Figure 4.10: Plot of the accuracy over the varying percentage of real training samples in the Foggy label.
Subfigure (a) shows the average accuracy with standard deviation, as error bars, between the different
methods using ImageNet weight initialization. Subfigure (b) shows the average accuracy with standard
deviation between the different methods using random weight initialization.
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5 Discussion

This chapter contains discussions about the results from using different generator architec-
tures in CycleGAN and how they compare to using traditional augmented techniques when
reducing the amount of available data. All discussions on the topic of visual quality of the
CycleGAN generated images are based off the authors opinions and may not reflect the opin-
ions of a wider audience. The method will also be discussed as well as work in wider context.

5.1 Result

What made this work interesting to pursue is the fact that CycleGAN does not need paired
data in order to perform image synthesis. As mentioned in Section 2.5.1 this is done by
creating a cycle i.e. translating an image from the source domain to the target domain, and
back to the source domain. This process can be seen in Figure 4.1. The traditional CycleGAN
implementation used instance normalization after all but the last convolutional operation
in both the generators GX and GY [6]. A contribution of this thesis work is insight in how
weight demodulation can be used to remove (or decrease to a large degree) artifacts that
appeared during training of CycleGAN. As mentioned, Karras et al. [50] experience similar
issues with their StyleGAN which they hypothesized to be the generator sneaking in signal
strength information past the instance normalization.

5.1.1 Visual results of CycleGAN images

All images in Chapter 4 are the result of training a CycleGAN model on sunny weather in the
source domain to either foggy- rainy- or snowy weather using both instance normalization
and weight demodulation in combination with different distributions of data.

5.1.1.1 Comparison between labels and distribution of target data

Both CycleGAN implementations could produce visually realistic images, but the degree of
realism varied depending on the label and the number of images in the target domain. Be-
tween the different labels, the foggy label performed best, where CycleGAN WD was capable
of synthesizing fog-like details to the sunny images, making contours of objects less detailed
and giving the images a grayer tone. This can be seen from the hand-picked samples in Figure
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4.2 which shows images where the generator tended to do well and Figure 4.7 are examples
of images that tended to not do well. It can be noted that scenes which are closer to the cam-
era are often harder to translate, which is understandable as the fog phenomenon are usually
more visible at larger views and longer distances. A difficult translation of a scene with very
limited view is shown in Subfigure (c) in Figure 4.7.

Comparing the results to the synthesized images from the snowy label (Figure 4.5), the qual-
ity of the hand-picked samples was on par with the best samples from the foggy label, where
grass and trees gained white details and the images got a bluer and colder tone. However,
the overall quality of the snow images were not as good as the foggy images. The same
could not be said for synthesized images from the rainy label where all samples had a grainy
tone and tended to create artifacts around objects (Figure 4.6), without any addition of rain
droplets. When reaching a critical number of training samples, it becomes clear that both
models struggle creating fog-like details and instead resorts to manipulating the colors more
aggressively. This is most prominent in Subfigure (h) and (i) in Figure 4.9 and Subfigure (g)
and (i) in Figure 4.4.

The effect the number of images in the target domain had on the synthesized images came to
no surprise. As the number of images in the target domain decreased, so did the visual quality
of the synthesized images. This was apparent for both implementations of the CycleGAN
model, as can be seen in Figures 4.2 to 4.4 and 4.7 to 4.9. From these results it is possible
to see that the fog-like details become less prominent, and checkerboard artifacts starts to
appear as the amount of images in the target domain decreases.

5.1.1.2 Comparison between CycleGAN and CycleGANWD

The standard CycleGAN model often had difficulty translating images with fine detail, bright
spots or where objects were close to the camera. This often resulted in grainy, noise-like
artifacts or even to the extent of droplet effects. The result of noise appearing early in the
training can be seen in in the top-right corner of Subfigure (j) in Figure 4.2. Similar artefacts
have also appeared in Subfigure (h) and (i) figure 4.3. Finally in Figure 4.9 the translation has
failed completely in Subfigure (i) and (l).

Comparing CycleGAN to CycleGANWD, one can draw the conclusion from the images in
Chapter 4 that the variant with weight demodulation can handle difficult translations better
and does not produce as much noise like artefacts, meaning that the overall visual image
quality is higher than the standard CycleGAN. However, the standard CycleGAN can still
produce realistic images, under the circumstance that no artefacts appear, shown especially
in Subfigure (k) and (l) in Figure 4.2. The biggest difference between the two methods can
be seen when synthesizing rain- and snow-like weather. In Figure 4.6, showing generated
rainy images, there are clear evidence of discoloring when using CycleGAN, especially in
Subfigure (h) and (k) where the water got an unnatural yellow- or green tone. For snow-like
weather it is almost the other way around, where CycleGANWD appears to have made the
images more vibrant with a blue tone and CycleGAN has made the images more plain. This
is most evident when comparing Subfigure (a) and (g) or (b) and (h) to each other in Figure
4.5. In Subfigures (h), (k) and (l) CycleGAN appears to have generated good images overall,
with the exception that there exists artefacts in the middle of (h) and (l).

5.1.2 Metric results from classification

It should be pointed out right away that the performance of the full dataset are often outper-
formed by the methods throughout all data distributions. This should ideally not be possible,
as no method should be better than having a larger dataset with real images. This suggests
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that the metrics, including precision, recall, f1-score and accuracy, has a rather large window
of fluctuations, which is something to keep in mind when comparing the results.

Shown in Section 4.2 are the results from using the ResNet50 classifier initialized with Ima-
geNet weights. By examining the scores for the evaluation metrics for the Foggy label, one
can see that all evaluation metrics have similar score for all methods. However, the results
when having 25% of the training data stand out, seen in Table 4.4, more specifically the F1-
score for Method 0 and Method 1 for the Foggy label seems to have dropped significantly
compared to Method 2 and 3. Another difference is seen in the standard deviation of the
accuracy, where both CycleGAN methods showed a considerably smaller fluctuation than
using Method 0 and 1. This suggests both CycleGAN methods of balancing data could yield
better results when data is very scarce. The overall similar scores could be a product of using
the pretrained ImageNet weights, meaning that all the methods already are too well traine to
differ much in performance.

Shown in Section 4.2 are the results from using the ResNet50 classifier initialized with ran-
dom weights. In this case Method 0 has a trend to decrease in performance as the real images
in the training data decreases for the Foggy label, seen in Table 4.10 when examining the
F1-score compared to the other methods. In theory, Method 0 should be the method that
performs the worst, especially when the amount of images in the training data decreases, be-
cause no new images with new information are added. Even though the dataset is balanced,
by duplicating images, the classifier only trains on a small sample of unique images. The
standard augmentation techniques, Method 1, has a decent performance throughout all tests
except when using 25% of the training data, shown in Table 4.10. Method 2 and 3, CycleGAN
and CycleGANWD, both have equal classification performance throughout all tests, seen in
Table 4.8, 4.9 and 4.10. Noteworthy is that the F1-score in the Foggy label seem to quite stable
throughout the tests with different training data for method 2 and 3, both with the pretrainied
ImageNet weights and random initialization. Even though the CycleGAN sometimes gener-
ates images containing noise and artifacts it does not seem to impact the performance of the
classifier when comparing with CycleGANWDs classification results.

Comparing the results between using pretrained ImageNet weights and random weight ini-
tialization, the conclusion can be drawn that using pretrained ImageNet weights generally
yields a higher performance for all methods and data distributions, this can be seen in Fig-
ure 4.10. However, as a result of using pretrained weights, it is difficult to conclude which
method performs the best as a tool to balance imbalanced data. By also training the classifiers
with random weight initialization more evidence could be collected that further shows that
method 2 and 3 performs the best when training data is scarce. By examining the results from
both types of weight initialization it suggests that the CycleGAN methods could be used with
an advantage when balancing imbalanced datasets, especially for cases with low real training
data. Furthermore, between the two CycleGAN models, in regards to the snowy- and rainy-
label, CycleGANWD performed either better than CycleGAN or almost as good but with a
smaller standard deviation.

5.2 Method

The method included collecting and preprocessing data and training a CycleGAN and clas-
sifer on varying distributions of real images. Between the different labels, the foggy label was
explored more due to thinking that CycleGAN should be able to add fog to images better
than rain or snow. Because of time restrains, the other labels were not evaluated to the same
extent.
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5.2. Method

5.2.1 Data

The availability of high quality datasets containing images of different weather types are lim-
ited. Large high quality datasets made for similar work are often difficult to access, and the
datasets which are more easily accessible often lacks in quality. The quality of the dataset and
the size are therefore both large factors when choosing a dataset for the purpose of training
neural networks.

The reason for using the RFS dataset was mainly due to its availability and high quality. The
dataset was easily accessible through the report by Guerra et al. [4]. The dataset contained
five labels of weather and the images in the dataset were of high quality, i.e. the setting in
the images were often outdoor with larger views. There existed samples of close up photos
of humans, which was not wanted in this work, but those images were in the minority. One
disadvantage with the RFS dataset was its size. Only 1100 images were available in each
label, which is little in the context of training a neural network. However, using a larger
dataset would result in longer training times, especially for the CycleGAN which already
took between 22-27 hours to train, depending on the methods used. A larger dataset could
potentially lead to better results for both the generated images and classifier runs, however it
must be weighted against the longer training times that naturally comes with it.

5.2.1.1 Training- test- and validation set

There is no clear answer as to how large the test set should be, compared to the training set.
As mentioned in Section 2.4, Goodfellow et al. [10] suggested using a ratio of 8:2 between
training- and test set, which ended up being used in this work. The idea of using a test set is
to evaluate the performance of a classifier on data which it has not seen before and act as the
ground truth for new examples the classifier might predict in the future. Since what samples
appear in the training- and test set should be unbiased, the number of random samples in the
test set must be large enough so that it will more likely contain images that represent the said
ground truth. Because what images in different weather can contain is broad, the test set had
to make up a significant portion of all images, while still keeping enough training samples to
train the network.

To monitor the performance of a classifier during training, the training set was split into a
training- and validation set using a ratio of 9:1 according to Goodfellow et al. suggestion [10].
Since the number of images to train on started to get small (especially since the tests required
removing training samples in a target label) in comparison to what one would normally see
in machine learning, it was not plausible to shift the ratio in favor of a higher validation set.

5.2.1.2 Image augmentation

To test whether synthesizing new training samples using CycleGAN is better than traditional
augmentation, tests were performed using both methods and their results evaluated after-
wards. The image augmentations used in this is described in Section 3.7.1, which includes
manipulating brightness, hue, saturation and contrast. It is worth debating whether these
techniques should be included at all, since manipulating the sky in an image could mean that
the image starts to represent another weather phenomenon.

5.2.2 CNN Classifier

All tests were done using the ResNet50 model. As mentioned in 3.4 and 2.6.1, there were a
number of CNN networks to chose from. The purpose of this work was to see what implica-
tions CycleGAN synthesized images may have on the training process of an image classifier.
The choice was therefore not a matter of using the best performing network as a classifier
in this line of field, but rather using a network that performs well enough to compare the
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relative difference between the conducted tests in this work and to others work. With that in
mind, it was a matter of accessibility and training time. Comparing ResNet50 to other net-
works such as VGG-16 that has been used in similar works [4, 40], the deciding factor was
training time since both were accessible through Keras API.

At first, all classifiers had their weights initialized with ImageNet weights. The idea behind
this was that the classifiers would achieve a higher and more stable score. However, after ex-
amining the results presented in Section 4.2, it became apparent that no conclusion could be
drawn as all results (accuracy, precision and recall) and their standard deviation were some-
what indifferent from each other. For example, replacing images with duplicates (essentially
removing images) in a label should not perform better than the full dataset. One hypothesis
is that the network becomes too well adjusted to the training set very early on, and thus the
network does not explore alternative solutions. So instead of initializing the classifiers with
ImageNet weights, random weight initialization was used to see if the classification results
would be more conclusive.

Before the actual tests were conducted, there were some tweaking of hyperparameters such as
learning rate, epoch and batch size. The tweaking was done by evaluating the plots of empiric
loss and generalization error for some of the methods and changing parameters accordingly.
The parameters were however not tweaked to a wide extent and one could argue the results
could have been better by further tweaking of the hyperparamters.

5.3 Work in wider context

As mentioned in Section 2.6.2, weather classification and recognition can be used as a step in
improving video surveillance systems and autonomous driving. In such systems, the perfor-
mance of the weather classifier is of most importance which, more often than not, is trained
on imbalanced data. Take autonomous driving for instance, the environment where data is
acquired can consist of mostly sunny weather, which makes data under other weather con-
ditions sparse. Artificially synthesizing different weather conditions could therefore provide
more data for unfamiliar cases and thus help systems achieve a better performance for edge
cases.

5.4 Source criticism

The theory presented in this thesis work is based to a larger degree of Deep learning by Ian
Goodfellow et al [10]. Ian Goodfellow is employed by Apple Inc. as of 2019 as its director of
machine learning in the Special Proects Group. His book available online has been cited over
25000 times (according to Google Scholar1) and is therefore considered a reliable source. The
theory presented in Sections 2.5.1 is almost exclusively from the official CycleGAN paper by
Zhu et al. [6]. Their paper was first published in 2017 and has science then been cited over
8000 times (according to Google Scholar) and presented their work at 2 conference. Because of
these merits, it is also considered a reliable source. Sources cited in related works and papers
which the results are compared to are however not cited to a large extent, but considered
reliable as they are published articles that has undergone peer review. This is because weather
classification is somewhat new (Chapter 1) and so is research in using GAN to help balance
imbalanced data, which in itself is a bit of a niche within the field of deep learning.

1https://scholar.google.se/
2https://www.thecvf.com/
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6 Conclusion

This thesis work explored the possibilities of using CycleGAN to help balance imbalanced
datasets for multi-class weather classification and compare its performance to other common
augmentation methods. CycleGAN can be used to balance imbalanced datasets, especially
when the data is scarce, however the time it takes to train the model must be weighted against
the performance of the classifier. Artifacts which appeared during training of CycleGAN can
be removed by using weight demodulation in the convolution layer, similar to StyleGAN2
[50]. Thus, increasing the overall visual quality of the generated images, which is a contribu-
tion of this thesis work.

6.1 Research questions

1. How can a CycleGAN be used to enhance the performance of an existing CNN-
classifier using an imbalanced training set of weather images for multi-class weather
classification?

The performance of a ResNet50-classifier can be improved by synthesizing new training
samples using CycleGAN. This is done by translating images from a well represented
label to the underrepresented labels in the training set (assuming there are enough sam-
ples such that CycleGAN can learn the features of those particular labels). The sunny
label was chosen as the source domain for all translations to the labels foggy, rainy
and snowy. The reason being adding other weather phenomenons on top of the image
should in theory be easier than predicting what the discarded information should be
replaced with. For example, what exists behind a thick layer of fog?

2. Is it possible to augment images to represent other weather phenomenons from
sunny images, such as fog, rain and snow? Are there any significant differences
between a CycleGANs capability of generating the different weather phenomenons?

It is possible to translate sunny images to foggy, rainy and snowy images, but the visual
quality varied depending on what the label was in the target domain. Upon testing, it
was evident that translating sunny images to foggy images produced the best results
overall. CycleGAN was also capable of producing a handful of visually pleasing snowy

50



6.2. Future work

images while the rainy images were of poor quality. Replacing instance normalization
with weight demodulation removed artifacts that could appear during training, but
both methods could introduce discoloring in the images, depending on the target label.
For instance, CycleGAN proved to discolor rainy images while CycleGANWD made
snowy images unnaturally vibrant.

3. How does the quality of CycleGAN generated images change when reducing the
number of training samples in the target domain?

Reducing the number of images in the target domain lowered the visual quality of the
images. However, it did not seem to have a noticeable difference in performance of
the ResNet50 classifier, judging by the results of the evaluation metrics. Visually, as
the number of images in the target domain decreased, artifacts appeared in the form
of noise and checkerboard-looking stripes. CycleGANWD appeared to be superior to
CycleGAN in this instance, as CycleGANWD kept most of the details in the images
without introducing noise to the same degree.

4. For weather classification: How well does traditional augmentation techniques per-
form compared to CycleGAN when balancing an imbalanced dataset?

Comparing the results between using traditional augmentation techniques and Cycle-
GAN synthesized images to balance a dataset, in particular the f1-score and accuracy,
suggests that CycleGAN synthesized images performed better when using fewer real
training samples. Between CycleGAN and CycleGANWD, there was no noticeable dif-
ference between the two methods in terms of the classifiers’ performance. Initializing
the ResNet50-classifier with ImageNet-weights made the classifier perform better over-
all in comparison to random initialized weights, but it was difficult to conclude which
method performed better.

6.2 Future work

Previous works in the field of weather classification have contributed with their own datasets,
one example is the RFS dataset [4] used in this work. In order to improve the model and
get better results, it would be wise to explore the possibility of enlarging the dataset using
traditional scraping methods to have more samples to work with.

As mentioned in the discussion, a more in depth fine tuning of the hyperparameters could
lead to better performance of the classifier and perhaps yield more stable results between
tests. To get a more reliable average score between tests, it would have been preferable to
do further testing and take the average over a larger pool of classifier models. Furthermore,
removing the synthesized images that are bad according to the discriminator could lead to
an overall higher quality training set and thus a better classification results.
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