
Department of Science and Technology Institutionen för teknik och naturvetenskap
Linköping University Linköpings universitet

gnipökrroN 47 106 nedewS ,gnipökrroN 47 106-ES

LiU-ITN-TEK-A--21/064-SE

Improving the User Experience
of Visual Scripting Languages

Alexander Uggla

2021-11-22

Department of Science and Technology Institutionen för teknik och naturvetenskap
Linköping University Linköpings universitet

gnipökrroN 47 106 nedewS ,gnipökrroN 47 106-ES

LiU-ITN-TEK-A--21/064-SE

Improving the User Experience
of Visual Scripting Languages

 The thesis work carried out in Medieteknik
at Tekniska högskolan at
Linköpings universitet

Alexander Uggla

Norrköping 2021-11-22

Improving the user experience of visual
scripting languages

Alexander Uggla

Monday 29th November, 2021

Abstract

Visual scripting languages are used as alternatives to text programming to
make coding easier. Visual programming languages provide a structure and
a guidance that does not exist in text programming, which should make
them easier to code with.

Some users do however find that the structure in visual scripting lan-
guages makes it cumbersome to code. To find a design of visual scripting
that subvert this and has a better user experience than contemporary designs,
a prototype of a visual scripting interface was developed using an iterative
design and testing cycle. When a final prototype had been developed, it
was tested to see how it compared to text programming.

From the tests performed, a few teachings were discovered. If-statements
that grow perpendicularly to the rest of the code fit more information on
the screen at the same time and can feel more natural and easier to parse for
some users. Having a help menu with syntax-help makes it so that users do
not have to leave the program, which increases programming speed. The
visual coding elements in a visual scripting language need to be coloured
such that the most important parts are the most visible; otherwise users have
a hard time parsing the code. Showing existing variables that are in scope
gives the user a good overview of what variables they can use. Having help
menus where elements can be clicked to insert them at the user’s text cursor
reduces the chance of misspelling variables and gives the user confidence in
the correctness of the code. Having visual coding elements that can change
depending on context or by using toggles can make coding more intuitive
and faster.

i

Aknowledgements

A big thank you to Niklas Rönnberg, who have supported me in my work and
given me hope and advise when needed. You gave this project more time and
energy than many others would, and for that I am very grateful.

Thank you to everyone who answered and participated in the user tests of this
project. Without you, no science would have been possible.

I would also like to thank everyone from Voysys for creating the idea of this
thesis and supporting me in my initial development stages.

ii

Contents

Abstract i

Aknowledgements ii

Contents iii

List of Figures vii

List of Tables ix

1 Introduction 1
1.1 Background . 1
1.2 Aim . 1
1.3 Research Questions . 2

2 Theory 3
2.1 Program language design . 3

2.1.1 Design process . 3
2.1.2 Intuitive programming languages 4
2.1.3 Common needs of programming languages 4

2.2 Existing script languages . 6
2.2.1 Text-based interfaces . 6
2.2.2 Visual interfaces . 6
2.2.3 Characteristics of visual scripting and text scripting 7

2.3 User experience . 8
2.4 Norman’s design principles . 8

2.4.1 Visibility . 9
2.4.2 Feedback . 9
2.4.3 Affordance . 9
2.4.4 Signifiers . 9
2.4.5 Mapping . 9
2.4.6 Constraints . 10

3 Method 11
3.1 Target audience . 11
3.2 Development and refinement through user tests 12
3.3 Implementation . 14

iii

4 Exploratory phase 15
4.1 Test 1: Summation in graphical scripting 15

4.1.1 Result and conclusion . 16
4.2 Test 2: Graphical representation of code 17

4.2.1 Result and conclusion . 18
4.3 Test 3: Graphical representation of code (updated) 19

4.3.1 Result and conclusion . 20
4.4 Test 4: If-statements and information flow 20

4.4.1 Result and conclusion . 22
4.5 Test 5: Direction and variables . 22

4.5.1 Result and conclusion . 25
4.6 Test 6: Comprehension and orientation 25

4.6.1 Result and conclusion . 28
4.7 Test 7: If-statement growth direction 29

4.7.1 Result and conclusion . 32
4.8 Test 8: If-statement growth direction (updated) 32

4.8.1 Result and conclusion . 35

5 Refinement phase 36
5.1 Core Ideas . 36
5.2 Test 9: Online interview . 37

5.2.1 Result . 38
5.2.2 Discussion . 39
5.2.3 Conclusion . 40

5.3 Test 10: Online focus group test . 40
5.3.1 Result . 40
5.3.2 Discussion . 41
5.3.3 Conclusion . 41

6 Evaluation phase: Final version of Loke 42
6.1 Block Menu . 42
6.2 Start and Update . 42
6.3 If-statements . 43
6.4 Loops . 44
6.5 Functions . 45
6.6 Block snapping . 46
6.7 Declaring and using variables . 46
6.8 Creating functions . 47
6.9 Help Menu . 48

iv

7 Evaluation phase: Final Evaluation 51
7.1 Result . 51

7.1.1 If-statements . 51
7.1.2 Optional Typing . 52
7.1.3 Block Snapping . 53
7.1.4 Help Menu . 53
7.1.5 Text Fields in Blocks . 54
7.1.6 Text Wrapping . 54
7.1.7 Color Scheme . 54
7.1.8 Function Creation . 55
7.1.9 Loops . 55
7.1.10 Unfinished Code Chunks 56
7.1.11 Multiple Start Blocks . 56
7.1.12 Block Parsing . 57
7.1.13 Forgetting Quotation marks 57
7.1.14 Hidden information . 58
7.1.15 Time to Find Block . 58
7.1.16 Messy Programming . 59
7.1.17 Time to code . 59

8 Discussion 61
8.1 Code growth directions . 61
8.2 Help with syntax . 62
8.3 Node design . 62
8.4 Variables . 63
8.5 Automation . 64
8.6 Method . 65
8.7 Future Work . 66

9 Conclusion 68

References 69

A Test 9: programming scenarios 71
A.1 Scenario 1: Is Odd . 71
A.2 Scenario 2: Temperature . 71
A.3 Scenario 3: Camera . 71
A.4 Scenario 4: Camera looking direction 71

v

B Test 10: programming scenarios 73
B.1 Scenario 1: Print all numbers . 73
B.2 Scenario 2: Camera looking direction 73

C Final Evaluation tasks 74
C.1 Task 1 . 74
C.2 Task 2 . 74
C.3 Task 3 . 74
C.4 Task 4 . 74
C.5 Task 5 . 74
C.6 Task 6 . 74
C.7 Task 7 . 74
C.8 Task 8 . 75

vi

List of Figures

1 Block based visual scripting in Scratch 7
2 Node based visual scripting in Unreal Engine Blueprints. 7
3 3 designs A, B and C of connectors in visual scripting. A and B

merges action and data, while C keeps them separated. 15
4 Addition to a variable ’bar’ using an explicit version A and a

short-hand version B. 16
5 The calculation of gravitational force using A: nodes, and B: blocks. 17
6 A short program using A: nodes, and B: blocks. 18
7 An updated design for node programming. 20
8 Design A of information flow connectors. Labels are shown inside

blobs. The destination blob shows the name of the input variable. 21
9 Design B of information flow connectors. Labels are shown beside

circles. 21
10 Design C of information flow connectors. Labels are shown inside

blobs. The destination blob shows the name of the output variable. 21
11 A switch-like if-statement . 22
12 Design A, a vertically oriented block programming example, with

perpendicular growth of if-cases. 23
13 Design B, a horizontally oriented block programming example,

with perpendicular growth of if-cases. 24
14 Design C, a horizontally oriented block programming example,

using text for variables, instead of connectors. 24
15 Design A: Vertically oriented code with variables left and right of

the function name. 26
16 Design B: Horizontally oriented code with variables left and right

of the function name. 27
17 Design C: Horizontally oriented code with variables above and

below the function name. 27
18 Design D: Vertically oriented code with variables above and below

the function name. 28
19 Design A, if-statements growing in the perpendicular direction. . 30
20 Design B, if-statements growing in the parallel direction. 31
21 Design A: If-statements growing in the perpendicular direction;

breaks fewer conventions than Figure 19. 33
22 Design B: If-statements growing in the parallel direction; breaks

fewer conventions than Figure 20. 34
23 The first iteration of Loke. To the left is the Block Menu, to the

right is an instruction field for a user tests and in the middle is the
Work Space with some example code. 37

vii

24 The Loke programming environment. To the left is the Block
Menu, to the right is the Help Menu and in the middle is the Work
Space. 42

25 The Start and Update events. Multiple Start and/or Update events
can be used at once. 43

26 A code example showing the if-blocks in Loke. 43
27 Loops in Loke. To the left is a for-loop and to the right is a while

loop. 44
28 By clicking ”for” or ”while” a drop down menu is shown. This

menu is used to change between a for- and while-loop 45
29 A function block in Loke. 45
30 The names of output variables can be changed on a block by block

basis. To the left is a block that uses the default name of the output
variable. To the right the output variable name has been changed
to ’s’. 46

31 A variable creation block. Using this block, a variable can be
declared and be given a value. 46

32 A variable creation block and a math block that changes the value
of the declared variable. 47

33 The My Functions section of the Block Menu. Functions are cre-
ated by dragging out a function header to the work space. 47

34 A function ”create super string” has been defined by a function
header, as seen to the left. The function can be seen being used to
the right. 48

35 The help menu that is shown when focusing the text field of
an input variable. Potential variables that can be used, math
operators, string operators and boolean operators are shown. . . 49

36 The help menu that is shown when focusing a variable declaration.
All possible types for the variable are shown. 50

37 The time it took to for participants to complete each task in Python
and Loke visualized with box and whisker plots. The boxes show
the range from the first quartile to the third quartile, while the line
within the box shows the median of the task’s times. The whiskers
show the minimum and maximum times. Stars are considered
outliers. The plots are divided into pairs corresponding to the
different tasks. Task 1 is the ’Hello World!’-program, Task 2 is to
see if a number is prime, Task 3 is to create and use a function and
Task 4 is to design a control sequence for a real world application.
The blue boxes represent the time it took to complete the task in
Python, while the green represents the time it took in Loke. . . . 60

viii

List of Tables

1 Common programming language design objectives desired by
most programming languages. 5

2 Aspects to consider in the user tests. 12
3 All user tests performed during the development of Loke. The

tests are ordered by when they were performed. 13
4 The properties of the different designs created for Test 6 26
5 Out of the 18 participants the following amount of participants

thought the corresponding design was easy to comprehend and
read. 28

ix

1 Introduction

Visual scripting languages are used in everything from programming teaching-
tools to game engine behaviour definitions. Visual scripting can be easier to use
and be more intuitive than text programming, but it can also make coding slower
and more cumbersome. If a visual scripting language design can be found that
minimize the problems with visual scripting while still retaining its boons, that
design could be used to create programming languages that are easier to work
with than both visual scripting languages and text programming languages.

1.1 Background

The company Voysys is developing Odin, an engine for low-latency remote
control and monitoring of autonomous machines and vehicles. Currently, new
customers have to build custom plug-ins in C++ for their solutions. This process
takes a lot of time and effort due to the complexity of the engine and due to the
long compile times of C++. Plug-ins are currently only written by experienced
programmers, but the goal is for any person to be able to comprehend and create
them.

To solve this problem, one can create a higher level scripting programming
language. According to J. Vitek et.al in An Object-Based Visual Scripting En-
vironment [7], scripting is ”a compact notation for constructing applications from
pre-packaged components written in a target programming language”. Furthermore
they describe that scripting languages are used to simplify the programming
process by removing unnecessary syntax that is unimportant for the average
user. By creating a custom programming language, it is thus possible to choose
what is necessary to solve the given programming problems, and strip away any
other features, resulting in a more refined programming process.

1.2 Aim

The aim of this thesis is to determine which design of a visual scripting language
and interface that maximize the user experience of creating programs similar to
the plug-ins of Oden in terms of: information retrieval, reading speed, correctness
of program, program creation speed and cognitive load. Furthermore the aim is
to see how this maximized visual scripting language and interface compares to
writing code in a text programming language.

1

1.3 Research Questions

• In text scripting code grows from top to bottom, but with visual script-
ing one can utilize any growth direction. How can different code growth
directions be used in visual scripting, and what effect does those imple-
mentations have on the user experience?

• What features can be used to aid users in learning and remembering syntax,
and how well does those features work?

• What visual features are important for a graphical element in a visual
scripting language to show the important information and make it easy
and fast to read the code? Graphical element here means something that
graphically represents code, like a block or a node.

• Which aspects are important while organizing and visually representing
variables in a visual scripting language to make it easy to understand
where a variable comes from and make it easy and fast to use them?

• What kind of syntax and common code automation can be used in a visual
scripting language to reduce cognitive load and the time it takes to write
programs?

2

2 Theory

The process of creating a new programming language looks similar to the process
of creating any kind of software with an interface. There are however some
design principles that show up specifically for programming languages.

2.1 Program language design

The design of a programming language is vital for how usable it is as a tool.
Several studies have tried to compile which design processes and design goals
that lead to the most usable programming languages. These design patterns
consider both the user experience of the programmer and also the safety of the
programs that the language produces.

2.1.1 Design process

In PLIERS: A User-Centered Process for Programming Language Design [2], a design
process for designing programming languages is presented. The process inte-
grates user-centered design into the programming language design pipeline. The
design process have been used to create two separate programming languages,
with promising results. The stages of this design process are: Need finding,
Design conception, Risk analysis, Design refinement and Assessment.

Stage 1: Need finding. In this stage, the target audience is first defined. Then,
for each group within the audience, thier needs and desires for the language
are documented. This can be done through forms, interviews, or other similar
methods.

Stage 2: Design conception. This stage consists of a back and forth between
determining features that solve the target audience’s needs and low-fidelity
prototyping. The prototypes are tested to see if the features solve the target
audience’s needs.

Stage 3: Risk analysis. The resulting prototypes from the previous stage are
in this stage analysed to detect the risks with them. The target audience is further
studied to see if their knowledge match up to the requirements of the design
and, if not, how much training that would be required to operate the language.

Stage 4: Design refinement. In this stage, the design of the language is
refined in relation to the risks that were discovered in the previous stage. Fur-
thermore, the fidelity of the prototypes is steadily increased, to finally result in a
working program.

Stage 5: Assessment. Finally, the working program is tested on users, where
members of the target audience implement tasks in the new language. From

3

these tests it is gathered weather the language design fulfils the needs of the
target audience.

2.1.2 Intuitive programming languages

There have been attempts to create programming languages that are more in-
tuitive than the ones that are currently used. The theory is that languages that
are written in the same way that humans think would be easier to use and get
used to. This is referred to as a Natural language study. In Natural Programming
Languages and Environments [8], they tested how children intuitively think and
talk about instructions, conditions and routines. By looking at how children
think, it is possible to get information that is unaffected by current conventions
in programming. Some findings of this were:

• When asked to specify the rules of the classic Pac-Man game, the children
wrote ”When PacMan loses all his lives, it’s game over.” This is a form of
event-based thinking, where certain actions/conditions trigger an event
to be sent out, and when a listener hears this, something happens. The
opposite of this would be ”At every frame of the program, if Pacman has zero or
less lives, it’s game over”. It is thus, according to this report, more intuitive
to think in several steps of abstracted events than a direct line of logic.

• In another task, the children wrote ”Move everyone below the 5th place down
by one.” Here the children treats a group in the same way as a singular
item. The opposite of this would be ”For each person below 5th place, move
that person down by one”, in which each item of the group is acted upon
individually.

• The children often used drawn pictures for layouts, and text for actions
and behaviours.

2.1.3 Common needs of programming languages

In Interdisciplinary Programming Language Design [1], common design objectives
desired by all programming languages are presented. These are features that are
desired regardless of the application. A list of these design objectives can be seen
in Table 1.

4

Table 1: Common programming language design objectives desired by most program-
ming languages.

Design objective Description
Type safe The language should not have undefined behaviours.

For any combination of code, the result should be deriv-
able and known.

Correctness guarantees The language should be free from bugs and uninten-
tional behaviour.

Computationally pow-
erful

The language should be Turing complete, i.e. be able
to solve any kind of problem, given enough time and
memory.

Secure Hidden information should not be accessible unless
given permission.

Efficiency The language should be efficient in terms of execution
cost.

Portability The language should be able to be used on different
platforms.

Compilation time The language should have a fast compilation time.
Learnability The language should be easy to learn.
Error-proneness It should be difficult to introduce errors into the code.
Expressiveness It should be possible for users to easily solve tasks using

the tools of the program.
Understandability It should be easy to understand what programs written

in the language do.
Modifiability It should be easy to change an existing program.
Local reasoning It should be easy to understand small pieces of code in

relation to larger code-bases.
Coordination It should be easy for several developers to cooperate on

the same program.

All design objectives presented in Table 1 are important when designing pro-
gramming languages. Secure, Portability, Coordination and Efficiency will
however not be considered in this project. The focus of this project is to find
an interface design for a programming language, not to create a programming
language. Security, portability and ability to coordinate comes from how the
programs are saved and compiled, which is not a part of the interface design.
Efficiency has to do with the structure of the compiler and/or the interpretor,
which also is not a part of the interface itself.

5

2.2 Existing script languages

Throughout the years, several programming languages have been developed
with the goal to create a programming experience that is more intuitive and
easier to learn. Scripting is used in most of these programs since it allows for
more control of the programming language syntax. Programming language
interfaces can be divided into text-based interfaces and visual interfaces.

2.2.1 Text-based interfaces

In text-based interfaces, users write text into a text editor to code their programs.
This text is then interpreted by a program that determines how the code should
execute on a binary level. One prominent text-based scripting language is Python.
Listing 1 shows an example of code written in Python.

1 def fibIter(n):

2 if n < 2:

3 return n

4 fibPrev = 1

5 fib = 1

6 for num in range(2, n):

7 fibPrev , fib = fib , fib + fibPrev

8 return fib

Listing 1: Python example of Fibonacci sequence calculator from Rosetta Code

Python was developed specifically to create a language that was more easy
to read and comprehend [12]. To achieve this, the syntax of traditional program-
ming languages was simplified. Many brackets were removed and the language
instead relied on indentation for marking where chunks of code started and
ended, making it less cluttered. The language is also dynamically typed, mean-
ing that the programmer does not have to specify what type of variable they are
creating, only its name. This, and many more features, lead to a language that is
easy to read and write in.

2.2.2 Visual interfaces

In a visual interface, users place connected graphical elements in an area to
describe the flow of their program. This graphical structure is then interpreted
by a program that determines how the code should execute on a binary level. The
most prominent types of visual scripting are Block-scripting and Node-scripting.

Block based visual scripting uses blocks that snap together to form snippets
of code. An example of this is Scratch, a language designed to introduce children
to programming. An example of scratch code can be seen in Figure 1. Each

6

snippets starts with an event that triggers the code, executing the following lines
one after the other.

Figure 1: Block based visual scripting in Scratch

Node based visual scripting uses nodes that connect to each other through
connectors. An exampl of this is Unreal Engine 4’s Blueprints, which can be seen
in Figure 2. The nodes and connectors show the flow of actions and data. The
flow starts from an event node, continuing along the connected path, executing
all nodes it encounters.

Figure 2: Node based visual scripting in Unreal Engine Blueprints.

2.2.3 Characteristics of visual scripting and text scripting

Text scripting appears similar to writing text in English. However, unlike nor-
mal writing, scripting text is more syntactically defined and rigid in how it is

7

expressed. This can confuse those who are inexperienced with programming
practises [13].

Visual scripting systems have several advantages over text based scripting.
Relationships between different parts and variables of the code can be shown
more clearly in a 2 dimensional graph where connections can be drawn between
nodes which can be spatially positioned in an logical way. This can make it easier
to understand and make changes to the program. The order of programming
activity also does not need to be as linear as text based coding. By adding nodes
to the graph instead of explicitly writing code, the syntax specifics can also
mostly be avoided [13]. Visual scripting editors can also be more efficient than
text based coding for programmers with dyslexia [5].

There are some aspects that are not beneficial however. Since text based
coding is more compact than visual, it can be difficult to navigate larger programs
with many nodes and connections that may span multiple screens or pages. There
is also a risk of visual clutter in complex programs. In general these problems
are manageable since code in general tends to be written in chunks which means
large programs can be divided into more digestible parts [6, 13]. Additionally,
once a programmer becomes more skilled, visual scripting languages can feel
limiting and too slow to work in [6].

To make the visual scripting easier to use it is worthwhile to consider the
menu design. While context menus are more practical for experienced users,
fixed menus to the side are helpful for beginners [3].

2.3 User experience

A good user experience is in this report defined as one that fulfils the design as-
pects mentioned in Chapter 1.2, Aim, which are: correctly retrieved information,
fast reading speed, high correctness of program, fast program creation speed and
low cognitive load for the user. This definition is based on the Interaction Design
Foundation’s definition of user experience, which in User Experience (UX) Design
is described as everything that a user feels, thinks and does with a product, all
the way from acquisition to integration and usage [4].

2.4 Norman’s design principles

In The design of everyday things, Donald Norman describes some interface design
principles that make users correctly use interfaces faster and with less frustra-
tion [10]. Some of these are visibility, feedback, affordance, signifiers, mapping
and constraints .

8

2.4.1 Visibility

The more visible a part of an interface is, the more likely a user is to interact
with it. A part of an interface can have its visibility increased with for example
contrasting colours, movement and form. Parts of the interface that the designer
wants the user to use should have high visibility, while those parts that the
designed do not want the user to interact with should have lower visibility.

2.4.2 Feedback

Users need feedback from the interface, both when they use it correctly and
when they do not. The interface should indicate that it has received the users
input and/or that it is processing the input. This could be for example with
sound, changing colours or tactile changes.

2.4.3 Affordance

The interface should be designed such that the desired action of the user is the
most intuitive and apparent action. This intuition could come from previous
experiences, learned patterns or the inherent shape of the interface. When the
user sees the interface they should automatically know and/or want want to do
the desired action. This could be by for example putting a handle on the side of
a door that the user should pull and putting a pushing-pad on the side that the
user should push; the handle looks pullable which makes the user want to pull it
and the pad looks pushable which makes the user want to push it. An interface
has affordance of ”x” if ”x” is the intuitive thing to do with it.

2.4.4 Signifiers

Signifyers can be symbols or text that describes what action the user should
perform or what something does. Examples of this could be a stop sign that has
the words ”STOP” which tells the user that they should stop, or a button with a
printer on it that tells the user that the button will print out their document.

2.4.5 Mapping

Mapping means that the controls and monitors for a system should look and
feel similar to the system itself. If for example a set of lamps [A, B, C, D] are
positioned in order, the buttons to control them should be positioned in the same
order [a, b, c, d]. If they were positioned in for example the order of [b, a, d, c] it
would result in unsuccessful mapping that would be confusing to the user.

9

2.4.6 Constraints

In all systems there are actions that would be possible that the designer do
not want the user to do. By introducing constraints that hinder the user from
performing such actions or make the user not want to do those actions, the user
will not perform the undesired actions. Examples of this could be to lock of an
area of a store that the user should not be in, to make a cartridge that should not
be eaten taste bad or to make a user unable to proceed in a web form unless they
filled in all required text fields.

10

3 Method

To understand what aspects of visual scripting languages that create a good
user experience, multiple different designs were created, evaluated by users and
iterated upon, to see the effects of the designs and which designs that led to the
most benefits. To further understand the effects of the designs a prototype of a
visual programming language was created. This prototype was named Loke.

The design process of the designs and Loke followed an iterative work pro-
cess, where the evaluations of previous designs influenced future designs and
tests. The reason for this is because the more complex designs required knowl-
edge that only could be gathered by testing the individual sub-designs of the
complex design.

The design process roughly followed the PLIERS method introduced in
Chapter 2.1.1. Firstly, the target audience and the type of programs that they
create and read was defined. Secondly, non-interactive low-fidelity prototypes
of designs were created and tested by potential users. Thirdly, an interactive
prototype without back end was created of which designs were further iterated
upon and tested by potential users. Finally, a final evaluation was used to see
how the final designs affected the user experience.

3.1 Target audience

The target audience was defined as those who create and read code that is similar
to the plug-ins of Oden. An example of such code could be a program that sends
a signal to a self driving car to press the gas as long as the car’s sensors do not
detect anything within two meters in front of it. The target audience would
need basic programming functionality such as functions, loops, conditions and
math operators; signals from sensors and output signals are assumed to exist as
functions within the programming environment.

The target audience was divided into two groups: Novices and Experts. The
two groups are based upon how often a person codes. In user tests, participants
estimated how much they code using a 4 step scale from ”I have never coded”
to ”I code basically every day”. Participants that answer one of the lower half
of options were considered Novices while those that answer the greater half
of options were considered Experts. This grouping was introduced in Test 2,
which means that the number of Novices and Experts that participated was not
recorded for Test 1.

Loke needed to be developed such that a Novice could understand the code,
but they do not necessarily have to be able to write the code. A Novice should
be able to learn to program in Loke, but they are expected to get external help. A

11

Novice could be a seller at a company that needs to know what a program does
in order to effectively talk about it with costumers.

The Experts are the primary target audience of Loke. After an initial training
period, the interface should feel natural and easy for the Expert to work in.

3.2 Development and refinement through user tests

The design of Loke followed an iterative process, where designs were evaluated
using user tests which informed how the designs should be changed. The designs
were evaluated using the aspects listed in Table 2. The online form tests and
e-mail correspondence could however not test all of these aspects and thus only
tested information retrieval, cognitive load, and perceived reading speed. The
interviews did on the other hand test all of the aspects.

Table 2: Aspects to consider in the user tests.

Aspect Question
Information retrieval Is it possible to correctly guess what a piece of code

does?
Reading speed How long time does it take for participants to come to

conclusions about the code while reading it?
Cognitive load How straining and confusing is the language - both to

read and write - subjectively?
Correct code When code is written, is it correct?
Program creation speed How long does it take to write correct and complete

code?

The development of the visual scripting language was divided into three phases:
Exploratory, Refinement and Evaluation.

In the Exploratory phase, non-interactive designs of specific parts of the
language were designed and shown to test-participants in mainly online forms.
The purpose of the Exploratory phase was to get a rough understanding of what
users wanted from a visual scripting language and if the proposed designs were
intuitive. In these tests, participants compared different variants of the same
interface and gave feedback and opinions on how they would like the interface
to be designed. The Exploratory phase had 8 user tests, of which 5 were online
forms using Google Forms, 1 was a semi-structured interview and 2 were free
form evaluations by e-mail.

In the Refinement phase, the designs from the Exploratory phase that scored
positively with participants were implemented as an interactive prototype, which
became Loke. The tests in the Refinement phase focused on the usability of Loke

12

and solving problems of the designs that had to do with interaction. The Re-
finement phase had 2 user tests, of which both were semi-structured interviews
where participants solved programming tasks in Loke.

In the Evaluation phase, Loke was updated to solve as many problems as
possible that had been brought up in the previous phases. Loke was then tested
with a Final Evaluation where participants solved a number of tasks in both
Loke and the text scripting language Python. The opinions from the participants
in this test was used to see how well the ideas and features of Loke worked.

Table 3 show all the user tests that were performed during the different
phases. All the tests were performed online. The participants of the different
tests were not unique; the same participant could take part in any number of
tests.

Table 3: All user tests performed during the development of Loke. The tests are ordered
by when they were performed.

Focus Participant count Test type
Exploratory phase

Summation in visual scripting 7 Online form
Graphical representation of code 13 Online form
Graphical representation of code
(Updated) 2 Semi-structured

interview
If-statements and information flow 10 Online form
Direction and variables 23 Online form
Comprehension and orientation 18 Online form

If-statement growth direction 13 Free form feedback
through e-mail

If-statement growth direction
(updated) 15 Free form feedback

through e-mail
Refinement phase

Usability and refinement 1 4 Semi-structured
interview

Usability and refinement 2 4 Semi-structured
focus group

Evaluation phase

Final evaluation 5 Semi-structured
interview with form

The online forms were distributed using social media. The participants answered
the forms alone at their own pace.

During the semi-structured interviews, participants shared their screen and

13

had a discussion with a test-conductor while completing programming tasks.
The participants of the interviews were handpicked from among current and
recently graduated university students with programming knowledge. For the
interviews, some questions were prepared in advance while others where asked
based upon the participants’ reactions.

For the free form e-mail feedback, images of designs were sent out to profes-
sional programmers with connections to Linköping University. The program-
mers then sent back e-mails with free form design-feedback after evaluating the
designs either alone or with their colleagues.

The final evaluation was a semi-structured interview but with a form and
time taking of the programming tasks. The participants were able to have a
discussion with the test-conductor while answering the form, but were not
required to.

3.3 Implementation

Loke was implemented in Godot, an open source game engine. The engine has a
robust graphical user interface system, fast compile times and can be deployed
to many different operating systems, as well as for the web. This made Godot a
good choice since it was easy and went fast to iterate on designs using it. If a
product based on Loke would be produced, it would have to be developed in
a lower level language to get better performance and to hook it up with other
programs, for example compilers.

14

4 Exploratory phase

In the Exploratory phase, designs of common programming language features
were designed and tested using non-interactive prototypes. This was an iterative
process, where the results from one test influenced future designs and tests.

4.1 Test 1: Summation in graphical scripting

Test 1 focused on summation of variables. It was an online form and had 7
participants. The grouping of Novices and Experts started being used in Test
2 which means that there is no data for Novice/Expert-distribution for Test
1. Since Test 1 was the first test, it was also an exploration of how the tests in
general should be designed.

In visual scripting, there are often two kinds of connectors: action (after this,
do that) and data (use data from here). If these connectors could be merged, it
would reduce clutter. Two ways of merging these connector types can be seen as
alternative A and B in Figure 3. In the same figure, C is the conventional method.

Figure 3: 3 designs A, B and C of connectors in visual scripting. A and B merges action
and data, while C keeps them separated.

Additionally, two versions of adding a value to a variable were evaluated.
Figure 4 shows the two versions where A is an explicit version and B uses the
short-hand ’add to’.

15

Figure 4: Addition to a variable ’bar’ using an explicit version A and a short-hand version
B.

The first question of the test asked the participants which graphical scripting
languages they had used before. This was get an understanding of how much
participants knew about coding and visual coding.

Then, the participants were shown Figure 3 and 4. The participants graded
each design in each Figure with a five grade scale by how easy it was to un-
derstand them. They also choose which of the designs in each figure that they
thought would be the fastest to work with. After that, they got the opportunity
to write free text thoughts and opinions about the designs.

4.1.1 Result and conclusion

While viewing Figure 3, the participants thought that separated data and action
connectors where a bit more easy to understand than joined connectors. Out of
the seven participants, four agreed that A was easy to understand, while five
thought that for B and all seven thought that for C. Five out of seven perceived
that C would be the fastest to work with. The concept of joining data and action
connectors was discarded since the results did not show any clear benefits of
using it.

For Figure 4, the participants thought that the the explicit version A and
short-hand version B were equally easy to understand. However, six out of
seven perceived that B would be faster to use while coding themselves since it
used fewer nodes and connections. The conclusion from this is that both versions
should be implemented in a programming environment. Version A provides
flexibility while version B provides development speed for simple problems.

The question regarding which graphical scripting languages participants had
used before did not give sufficient insight into programming skill, so another
question was used in later tests.

Some participants were confused about whether variables in the examples
had values since before. In later tests, variables where always given by a function,
to signal that they already had a value.

16

4.2 Test 2: Graphical representation of code

Test 2 tried to evaluate if participants preferred block or node programming,
and if these preferences differed depending on the task. It was an online form
and had 13 participants. The hypothesis was that node-programming would be
preferred when dealing with mathematical expressions, and block-programming
would be preferred while handling the function flow of the program. To test
this hypothesis, participants got to see two different programmings tasks, each
implemented using both block- and node-programming. The participants then
rated how easy it was to see how the program worked, and whether the design
was overwhelming and/or noisy; each on a five step scale. Figure 5 and 6 shows
these designs.

Figure 5: The calculation of gravitational force using A: nodes, and B: blocks.

17

Figure 6: A short program using A: nodes, and B: blocks.

Participants were also asked to self-evaluate their programming experience
based on how often they code using a four step range from ”I have never coded”
to ”I code basically every day”. This question proved to be an elegant way of
gauging the programming skill of participants; it is easy to answer and provides
a good enough estimate of skill and familiarity. The group that identified with
the bottom half of this range will be referred to as Novices while the top half will
be referred to as Experts. This question was used in all further online forms. In
this test, three participants were Novices and ten were Experts.

4.2.1 Result and conclusion

When it came to mathematical expressions, there was a slight preference for
block-programming. 9 out of 13 participants agreed that the node programming
example was easy to understand, while 11 out of 13 agreed that the block pro-
gramming example was easy to understand. In general, the participants thought
that the node programming example was slightly nosier that the block program-
ming example. In the free text comments, participants noted that both versions
would become messy if the equation grew in complexity. Participants also noted

18

several smaller features in each design that made them difficult to understand or
that would make them hard to work with. Ultimately, neither design is a perfect
fit for calculating mathematical expressions. Code for mathematical expressions
were further studied in later tests. No definitive preferences could be seen based
on programming familiarity.

The participants reported a clear preference for the block-programming de-
sign when it came to program flow. Participants did however note that the
block-programming design had a lot more effort in its design than the node-
programming design. They perceived that the node-programming design was
messy, uncompact and hard to understand. Due to the stated hypothesis, the
designer thought that node-programming would be worse, resulting in an un-
representative design. It is thus not possible to draw any conclusion that block-
programming would be better regarding program flow from this test.

4.3 Test 3: Graphical representation of code (updated)

Test 3 was an update of Test 2. It was an informal, in-person interview and had
2 participants, of which both were Experts. The test used the same questions
as Test 2 but they were used as discussion points rather than questions with
numerical answers. The node-programming design for program flow used in
Test 2 was refined into Figure 7 by straightening connectors, giving comparison
functions their own type of slimmed down block and reorienting the program
flow from top to bottom. The aim of these changes was to reduce clutter and to
make the flow of the code easier to see.

19

Figure 7: An updated design for node programming.

4.3.1 Result and conclusion

The two participants showed interest in both designs with no clear preference
when it came to either mathematical expressions or programming flow. No
conclusion could be drawn whether one design is better than the other when it
comes to how easy it is to read and understand the code. It could be that they are
equally good, or that one is better under some untested circumstance. In further
tests, both block and node programming were used in the designs.

4.4 Test 4: If-statements and information flow

Test 4 looked at different designs of showing information flow and explored how
understandable a certain type of if-statement design was. It was an online form
and had 10 participants, of which 8 were Experts and 2 were Novices.

20

The information flow designs used wires between function outputs and
function inputs, which is a node-programming feature, with three different
looks to the design. Figure 8, 9 and 10 show the different designs A, B and C
respectively. In programming in general, the input of a function can be refereed
to using two different names: either the ’slot’ name, which is the name of the
variable in the function header, or the input variable name, which is the name
of the variable that is inserted into the function when the function is used in a
larger program. Design C in Figure 10 used the input variable name, which is
how it works in text programming, while A and B used the slot name.

Figure 8: Design A of information flow connectors. Labels are shown inside blobs. The
destination blob shows the name of the input variable.

Figure 9: Design B of information flow connectors. Labels are shown beside circles.

Figure 10: Design C of information flow connectors. Labels are shown inside blobs. The
destination blob shows the name of the output variable.

The design of the tested if-statement design is shown in Figure 11. This
design had implicit else-clauses. It functioned like a switch-statement but with
comparison operators as cases.

21

Figure 11: A switch-like if-statement

4.4.1 Result and conclusion

Regarding the information flow designs, participants thought that design B was
the most easy to understand and the least noisy of the three. In the text answers,
participants explained that they thought design B was clean and elegant in
comparison to the other two. Out of the 10 participants, 6 would like to code
using design B and 3 using design A; 1 participant was indifferent. Opinions did
not differ when accounting for programming familiarity. From these results, it
seems like users would prefer to see the slot name of function inputs rather than
the input variable’s name. Putting variable names in blobs also seems to make
the designs less readable, but it is not possible to conclude why. The design of
inputs and outputs of function were further explored in Test 5.

The If-statement design was generally understood, but some participants
thought it was unclear whether all the cases would be activated if they were true,
or only the first one. The implicit else-clauses where discarded in future designs
in favour of an explicit design.

4.5 Test 5: Direction and variables

Test 5 explored opinions of code growth direction and how variables should look
while slotted into a function. It was an online form and had 23 participants, of
which 16 were Experts and 7 were Novices.

In the first part of the form, participants where shown two examples of code
that each used different orientations. The first one, design A, was vertically
oriented like regular code, as can be seen in Figure 12, while the second one,
design B, was horizontally oriented, as can be seen in Figure 13. A feature of
both these designs is that the if-cases grow perpendicularly to the rest of the code

22

as opposed to growing in parallel to the code, creating several parallel paths
rather than one long path. The idea comes from flow diagrams, where different
possible paths are drawn in parallel. Stacking if-cases perpendicularly to the
code should make code easier to comprehend and read since it maps better to
how humans think of choices and possibilities.

Figure 12: Design A, a vertically oriented block programming example, with perpendicu-
lar growth of if-cases.

23

Figure 13: Design B, a horizontally oriented block programming example, with perpen-
dicular growth of if-cases.

In the second part of the form, participants where shown two ways of dis-
playing variables while slotted into a function. The first design used a circle.
This is the same design A that is shown in Figure 12. The second design C used
the name of the variable with a highlight, and can be seen in 14.

Figure 14: Design C, a horizontally oriented block programming example, using text for
variables, instead of connectors.

24

4.5.1 Result and conclusion

The participants as a whole had no definitive preference for either orientation
of code, but individual participants had strong preferences. For both ease of
reading and ease of working, over half (13 out of 23) of the participants ”Defi-
nitely preferred” either vertical or horizontal orientation, with equal distribution
between them. While looking at the mean answer, there was a slight preference
for horizontal orientation while reading, and vertical orientation for using it
themselves while coding. Since the answers did not show any clear favorite,
code orientation was further explored in Test 6 to get a better understanding.

In free text comments, participants showed a dislike for the fact that if-
statements grew perpendicularly to the rest of the code. This could be because
participants are used to if-statements growing in the same direction as the rest
of the code, or it could be that the presumed positive effects of perpendicular
if-statements do not exist in practice. Perpendicular growth of if-statements was
further explored in later tests.

When it came to how to display variables in functions, a majority (14 out of
23) of the participants preferred seeing the variable name with a highlight, while
2 were indifferent. When it came to working with the code the answers were
uniformly distributed. There were however errors in the online form when it
came to the questions about working with the code. The figures and the question
used different names for the designs, which could have confused participants.
Nonetheless, since there was a strong preference for using the variable name for
comprehension, that design will be used in further iterations.

4.6 Test 6: Comprehension and orientation

Test 6 further explored opinions of code growth direction. It was an online form
and had 18 participants, of which 14 were Experts and 4 were Novices.

In Test 5, some participants said that they preferred horizontally oriented
code for reading; a hypothesis was thus developed that it is easier to read code if
the reading path only crosses function names, and not inputs and/or outputs.
The reading path is the line that a user have to read in to read the code. In the
designs of Test 5, variables were always positioned above and below the function
name, so it might have been the reading path that made the difference, rather
than the orientation itself.

To test this hypothesis, participants were shown four different designs, with
differences to their orientation and where their variables were positioned. The
designs A, B, C and D were created as shown in Table 4. The designs can be
seen in Figure 15, 16, 17 and 18 respectively. The designs were accompanied by a
legend that described how the input and output was positioned for that design.

25

Each designs readability and comprehensibility was evaluated using a five grade
scale along with free text answers.

Table 4: The properties of the different designs created for Test 6

Variables left/right Variables top/down
Vertical orientation A D
Horizontal orientation B C

Figure 15: Design A: Vertically oriented code with variables left and right of the function
name.

26

Figure 16: Design B: Horizontally oriented code with variables left and right of the
function name.

Figure 17: Design C: Horizontally oriented code with variables above and below the
function name.

27

Figure 18: Design D: Vertically oriented code with variables above and below the function
name.

4.6.1 Result and conclusion

Using Google Forms was a limitation in this test. In Google Forms, the page
width is limited to match that of a normal A4 document, which means that it
is impossible to display wide images without cutting them up or scaling them
down. Design B suffered the most from this, since it was the widest design. To
test participants, design B looked more noisy than it would be if it was used in
an implementation, which might have skewed the results.

Table 5 shows how many of the participants that thought a given design was
easy to comprehend and read.

Table 5: Out of the 18 participants the following amount of participants thought the
corresponding design was easy to comprehend and read.

Design A B C D
Number of participants (out of 18) 8 6 7 14

28

In general participants liked design D the most. In the text comments, the
participants said that they preferred when the code-blocks were tightly packed,
which was the case when input and output were located above and below the
function name. Participants noted that it felt weird for the input to be placed to
the left, and output to the right, of the function name. This is probably because
this positioning is contrary to how text-programming handle input and output.
Design A might have been better received if the input and output swapped sides,
but it is not certain since some participants said that they preferred the compact
block design. Due to the high ratings of design D, it was used in all further
designs.

4.7 Test 7: If-statement growth direction

Test 7 further explored opinions of if-statement growth direction. It was a
free text e-mail survey and had 18 participants, of which all were professional
programmers, and thus Experts.

In text code, the different cases of an if-statement grow in the same direction
as the rest of the code, but in code visualizations such as flow-diagrams, the
different cases are sometimes stacked perpendicularly to the rest of the code
flow, as if the code is branching like a tree. It is difficult to get this branching
effect with text code, but it is quite easy to do with block code. The question is:
are if-statements more readable while their cases are stacked perpendicularly or
parallel to the rest of the code?

The test followed a more informal structure than previous user tests. Two
different designs A and B using perpendicular growth and parallel growth
receptively, were sent to industry professionals per email asking for opinions on
the two designs and which one they preferred. The designs can be seen in Figure
19 and 20.

29

Figure 19: Design A, if-statements growing in the perpendicular direction.

30

Figure 20: Design B, if-statements growing in the parallel direction.

31

4.7.1 Result and conclusion

The industry professionals had evenly divided preferences. 3 of the participants
had a clear preference for design A, while another 3 had a clear preference for
design B. The rest had no clear preferences.

Many of the responses mentioned that the designs felt weird because they
broke conventions. For example, the designs used ”then” to signal something
that occurred after the if-statement. This clashed with the industry professionals
intuition, since they thought that ”then” signaled what code that should be
executed if the condition of the if-statement was true. This is a pattern that can
be seen in some earlier programming languages, such as in COBOL[11], as seen
in Listing 2.

1 IF [condition] THEN

2 [COBOL statements]

3 ELSE

4 [COBOL statements]

5 END-IF.

Listing 2: If-statement in COBOL.

The answers also mentioned that the code within the if-blocks was not in-
dented, which also broke conventions. To get more feedback relevant to if-
statement growth, the designs were reworked to fix the issues raised by the
participants for a second run of the test.

4.8 Test 8: If-statement growth direction (updated)

Test 8 even further explored opinions of if-statement growth direction. It was a
free text e-mail survey and had 15 participants, of which all were professional
programmers, and thus Experts.

In the test, the convention breaking problems of the designs of test 7 were
fixed. The updated designs were sent to the same industry professionals as in
test 7 to get more opinions on the if-statement growth orientation. The designs
can be seen in Figure 21 and 22.

32

Figure 21: Design A: If-statements growing in the perpendicular direction; breaks fewer
conventions than Figure 19.

33

Figure 22: Design B: If-statements growing in the parallel direction; breaks fewer con-
ventions than Figure 20.

34

4.8.1 Result and conclusion

This time the results were more favoured towards perpendicular growth. 10 out
of 15 participants preferred perpendicular growth, while only 2 people definitely
preferred parallel growth. 2 people liked both and 1 person disliked both.

Participants liked perpendicular growth because it was easy to get an overview
of all cases and because of less unused space on the screen, which could lead to
less scrolling.

Some participants were however concerned that the code would become
unreadable if too many cases were added to the if-statement in the perpendicular
version. They feared that it would be too difficult to move from the blocks
before or after the if-statement to a far-right case or vice versa, as compared to
scrolling up or down in a text document. Viewing if-and switch-statements is
still difficult with parallel growth, so this might not be a problem that is unique to
perpendicular case growth, but rather a problem that experienced programmers
have adapted to while using parallel growth. The problem could perhaps be
solved by having good enough zoom-functionality exists in the program, where
users can zoom out to see the bigger picture before zooming in at a specific point
in the code. Further tests are required to determine how a larger amount of cases
affect the viewing experience depending on growth direction.

35

5 Refinement phase

The results and conclusions from the Exploratory phase provided guidance to
design aspects of visual scripting. However, since the designs used in these tests
were low-fidelity and non-interactive, it was only possible to test readability and
comprehension of the designs, but not interaction and program creation. In the
Refinement phase a high-fidelity prototype called Loke was developed in the
Godot Game Engine to get feedback on these other aspects. Loke was developed
using the previous designs as its base and was further iterated upon with the
help of feedback from Test 9 and Test 10.

5.1 Core Ideas

Loke was developed using a number core ideas that had been gathered from
previous user tests. These were:

• Top-to-bottom Code Growth: The code is mostly written from top to
bottom of the screen. This is because:

– It is similar to how code is typed in regular programming.

– It is how the Western culture write texts normally.

• Blocks for Structure, Text for Content: Blocks are used for the structure
of the program, for example to specify rough logic, order of execution and
program flow. These blocks have text-boxes where users can specify the
exact functionality of the blocks, which can be number of iterations, exact
logical operations and inputs. This is because:

– Blocks cannot be misspelled and provide the user with easy access
and knowledge of inputs and outputs.

– It is more cumbersome to create complex expressions with blocks than
to simply type them with text.

• Input-Name-Output: The components of a block are ordered such that
the Input is at the top, the Name is in the middle and the Output is at the
bottom. This is because:

– It provides the shortest distance from were a variable is declared to
were it is used.

– It leads to the most compact layout, were the distance from any ele-
ment of the function is close to any other one.

36

– Having the different components on different lines makes users un-
derstand that they are different things.

• Horizontal Case Growth: The cases of if- and switch-cases grow horizon-
tally. This is because:

– It uses up unused space of the screen, allowing for more code on the
screen at the same time.

– It is more intuitive to stack different alternatives in parallel than in
series.

The first iteration of Loke, which was developed using these core ideas, can be
seen in Figure 23.

Figure 23: The first iteration of Loke. To the left is the Block Menu, to the right is an
instruction field for a user tests and in the middle is the Work Space with some example
code.

5.2 Test 9: Online interview

Test 9 was a semi-structured interview that tested Loke with 4 participants, of
which all were Experts.

37

The purpose of the test was to discover how it felt to program with the
designed interface, what features that were missing and if the existing features
were intuitive.

Each interview started with a demonstration where the test participant was
shown how the interface worked. The participant then completed four program-
ming scenarios using the interface. The scenarios can be seen in Appendix A.
The participant was instructed to talk aloud about their thought process. Once
the participant had finished the scenarios, they were asked questions about the
experience and were allowed to talk freely about what they liked and disliked
about the interface.

5.2.1 Result

The participants gave feedback that:

• The if-statements felt streamlined and okay to work with, but it could get
messy if there were many cases or if the argument of a case was too long.

• When you connect an if-statement to another if-statement, it transforms
into an elif-statement. To get an else-statement, one must right click this
elif-statement. This works and is fine once you know it, but it would be
very difficult to find it out if no one told you.

• Bigger functions are blocks, while mathematical expressions such as addi-
tion are written inside of text boxes; this could cause ambiguity when it
comes to middle sized functions such as the cross product or checking if
an array is empty. Should these functions be blocks or text-snippets?

• It is confusing when variables don’t have a type.

• In general it felt good to have Input and Output above and below the
function name. The ”print”-function was however an exception, since the
function name itself is a command. Writing ”print ’Text’” is more akin to
how humans talk than ”’Text’ print”, which is how it looked when the
Input was positioned above the Name. This caused some confusion.

• There was no way to see which math operations that were available.

• It felt good to have blocks and filling them with text. The blocks provided
structure while the text provided precision. Being able to write text gave
more freedom to write mathematical expressions as compared to other
graphical scripting languages such as Scratch where you have to code
everything with blocks.

38

• There was nothing that explicitly stated that the Input was on top of the
functions and Output was on the bottom. It could as well have been the
other way around. This caused confusion.

• When you have a lot of code on the screen at the same time, it gets a bit
difficult to parse.

Participants also noted several bugs in the program.

5.2.2 Discussion

Participants requested some functionality that would be outside the scope of this
thesis, such as a compiler, an undo function and general quality-of-life features
that did not contribute to the research goals of the thesis. These feature-ideas
were discarded in the interest of time.

One could argue that giving a demonstration would compromise the results
of the test, since it is difficult to test if an interface is intuitive if the participant is
already familiar with it. Programming interfaces are however different to many
other types of interfaces, in that a user often is introduced to the interface along
with some kind of tutorial or teacher. It is more interesting to see how a user
behaves when given instructions than if they were given none, since it is more
akin to reality.

The if-statements worked as expected. Participants were unfamiliar with
the perpendicular growth but otherwise there were no problems. As other
participants have expressed in previous tests, there were concerns in this test that
the code could become difficult to parse if the if-statements grew to wide. This is
something that also is true for regular code where the code becomes difficult to
parse once if-statements grow to long. It is however unclear in which of these
scenarios that the code would become more difficult to parse.

Creating the program structure with blocks and filling them in with text for
precise functionality had a positive reception. Most of the participants were
positive to the work-flow as compared to other visual programming languages.
This could however be because all participants were experienced programmers
that use text programming more than visual programming and that they liked the
design not because it is objectively better than other visual scripting interfaces,
but rather because it is more similar to writing text, which is what they are used
to. The interface was however explicitly designed to work well for experienced
programmers so it is nonetheless good that the participants felt that the interface
was easier to work with than many other visual scripting interfaces.

39

5.2.3 Conclusion

Optional typing was introduced for all function variables. A help menu was
introduced that showed all variables and operators that could be written inside
a given text box. By clicking on a variable or operator it was inserted into the
text box. Tools for creating new functions were introduced.

5.3 Test 10: Online focus group test

Test 10 was a semi-structured interview that tested Loke with a special focus on
the user experience of using a help menu and the creation of functions. The test
had 4 participants, of which all were Experts. One of the participants was a part
of Test 9, but the rest were not.

During the interview, participants were asked to implement 2 programming
examples, which can be seen in Appendix B. They were encouraged to collaborate
and think out loud. For this test, participants were initially not given any
introduction to the program. This was to see what parts of the interface that
were intuitive. Once participants got stuck and could not progress, they were
given an explanation to the different parts of the program to test the rest of the
features of the program.

5.3.1 Result

The participants gave feedback that:

• It was difficult to understand how to declare and use variables that were
not created by a function. There existed math-blocks that could do that,
but it was not intuitive how they worked.

• In the design there was an ”edit”-button next to the function name in the
function header-block that allowed the user to change the function’s name.
It would feel more intuitive to double-click the name to edit it.

• The user could set the variable type of variables, but the types themselves
were more complicated than necessary. Many people, including program-
mers, do not know for example what an ”enum” is.

• Having two fields for a variable, one for name and one for type, felt unfa-
miliar, but made sense once you got to work a bit with it.

• The interface is not intuitive right out of the box, it needs a tutorial.

• It was difficult to understand how blocks could be deleted.

40

• It was difficult to understand how variables could be deleted from function
headers.

• The blocks used studs to show in which direction they could be connected
to other blocks, similarly to LEGO -blocks. This however made it look like
the blocks could be arbitrarily connected anywhere along the studs, which
was not the case, and thus caused confusion.

• The help menu was helpful to know what could be written inside the text
boxes, but it did not help drastically.

Participants also noted several bugs. They also repeated feedback that had
been given in the previous test about features that had not been addressed or
changed.

5.3.2 Discussion

The help menu did not provide as much support as was intended, but that could
be a good thing. Participants noted that they used the menu more as reference
rather than to write code with by clicking on the variables and operators. The
reason behind adding the help menu was that participants did not know what
they could write inside the text boxes. Having a list of available actions along
with explanations seemed to be enough, even if being able to click to insert code
is a nice feature that some people can use.

The stud design did not work since the blocks were given affordance of being
able to be connected in ways that were not possible. The design should indicate
the way in which the blocks can be connected and it should feel unintuetive to
do it in any other way. One solution is to only have a single stud on one side and
and a single cavity on the other side. This way the blocks must be aligned to fit,
making sure users connect blocks accurately.

5.3.3 Conclusion

The block studs were given a new design to make it easier to understand how the
blocks should be connected. The math block was divided into two blocks: the
Create New Variable-block, that worked similarly to the variables of functions,
and Manipulate Variable-block, in which one could write arbitrary math to
manipulate a variable. The ”edit”-button to change the functions name was
changed into double clicking the name to change the name.

41

6 Evaluation phase: Final version of Loke

Figure 24 shows an overview of the final version of Loke. To the left is the Block
Menu that contains all blocks that can be used to program with. To the right is
the Help Menu that activates when the cursor is positioned within a text field. It
provides contextual information about the text field and describes what can be
written inside the text field. In the middle is the Work Space where the user can
place and connect blocks to create programs.

Figure 24: The Loke programming environment. To the left is the Block Menu, to the
right is the Help Menu and in the middle is the Work Space.

6.1 Block Menu

The Block menu is positioned to the left on the screen. It contains all the blocks
that can be used. The blocks are divided into different sections to make it easier
for the user to find the function that they are looking for.

6.2 Start and Update

Start and Update are event blocks. Start is called at the start of the program
while Update is called once every frame of the program. When they are called,
they execute the code that is attached to it. Multiple Starts and/or Updates can
be used at the same time in different parts of the program.

42

Figure 25: The Start and Update events. Multiple Start and/or Update events can be
used at once.

6.3 If-statements

One of the unique features of Loke is that the if-statements’ cases grow perpen-
dicularly to the rest of the code. A piece of code using if-blocks is shown in
Figure 26.

Figure 26: A code example showing the if-blocks in Loke.

An else if-block is created by placing an if-block to the right of an existing if-block.
Removing an else if-block from an if-block will turn it back into an if-block. An

43

else-block is created by clicking an else if-block with the right mouse button.
Clicking it again this way will turn it back into an else if-block. Each of these
blocks have a box below them; which is where the body of the case is put. Below
each if-block is a solid black line. Code put here will execute after the if-blocks
are done executing.

6.4 Loops

In Loke there are for-loops and while-loops, which both can be seen in Figure 27.

Figure 27: Loops in Loke. To the left is a for-loop and to the right is a while loop.

For-loops have a variable field where the iterating variable is defined. Then there
are two text fields where the start and end values of the iteration is defined. The
iteration is inclusive, which means that the loop will finish after the iteration
of i = end. The while loop simply has a text field. The loop will continue as
long as the text field evaluated to true. The loop-blocks work similarly to the
if-blocks in that they have a box below them which is the body of the loop and
that code placed below the black line will be executed when they are done. To
switch between a for-loop and a while-loop one can click ”for” or ”while” to get
a drop-down menu and click the respective loop-type, as can be seen in Figure
28.

44

Figure 28: By clicking ”for” or ”while” a drop down menu is shown. This menu is used
to change between a for- and while-loop

6.5 Functions

Function-blocks in Loke can be divided into 3 parts. At the top is the input, below
that is the name and at the bottom is the output. An example of a function-block
can be seen in Figure 29.

Figure 29: A function block in Loke.

Functions can have multiple inputs and outputs. Outputs are automatically put
in variables. The names of outputs can be edited on a block by block basis, as
seen in Figure 30.

45

Figure 30: The names of output variables can be changed on a block by block basis. To
the left is a block that uses the default name of the output variable. To the right the
output variable name has been changed to ’s’.

6.6 Block snapping

In Loke, programs are created by snapping different code blocks together. Most
blocks have a hollow on the top and a stud on the bottom. By placing blocks
together such that the hollows and studs connect, the blocks will snap together.
If-blocks also have hollows to the left and studs to the right. Moving a block will
drag with it all blocks that are snapped to it from below or to the right. It will
however unsnap from any block that it was snapped to from above or to its left.

6.7 Declaring and using variables

Variables can be declared either by a function, a function header or with the
variable creation block. Each variable consists of a variable name to the left and
an optional type to the right. A variable creation block is shown in Figure 31,
where a variable is declared and given a value.

Figure 31: A variable creation block. Using this block, a variable can be declared and be
given a value.

A math block can be used to change the value of a variable, as seen in Figure 32.

46

Figure 32: A variable creation block and a math block that changes the value of the
declared variable.

A variable only be used in the scope in which it is defined.

6.8 Creating functions

Functions can be created by dragging out a function header from the My Func-
tions section of the Block Menu into the Work Space. A function header can be
seen at the top in Figure 34, with the default name ’new func’. For each function
header in the Work Space there is a corresponding function block in the My
Functions section.

Figure 33: The My Functions section of the Block Menu. Functions are created by
dragging out a function header to the work space.

The functions body is defined by adding blocks to the header block, as seen to
the left in Figure 34.

47

Figure 34: A function ”create super string” has been defined by a function header, as
seen to the left. The function can be seen being used to the right.

The function name can be edited by double-clicking the name. Input parameters
can be added by clicking the plus button below the name. The name and
type of the inputs can be edited like normal text. Inputs can be removed by
first emptying the function name from any text and then focusing the mouse
elsewhere. Outputs are added by putting a return-block at the end of the function.
Additional outputs are added similarly to the inputs, by clicking the plus icon
in the return-block. Multiple return blocks attached to the same function will
mirror each other and have the same outputs. The return values of each return
block are however disconnected.

To the right in Figure 34 one can see a created function used in a program.
This function block has been dragged into the Work Space from the My Functions
section of the Block Menu.

6.9 Help Menu

The Help Menu is a contextual window that appears when the user is focusing a
text field. Focusing is when a text field is clicked and the user can write text in it.
The menu shows things that the user could want to use in the text field, such as
variables in scope and different kinds of operators. The window only appears
when the user is focusing a text field, otherwise it is hidden. The symbols are
buttons that can be clicked to insert them at the cursor. Figure 35 shows the help
menu for when a normal text field is focused while Figure 36 shows the help
menu for when a variable declaration is focused. In the variable declaration help
menu, clicking a type sets the type in the type field.

48

Figure 35: The help menu that is shown when focusing the text field of an input variable.
Potential variables that can be used, math operators, string operators and boolean
operators are shown.

49

Figure 36: The help menu that is shown when focusing a variable declaration. All
possible types for the variable are shown.

50

7 Evaluation phase: Final Evaluation

The Final Evaluation was a user test that tested and compared Loke in relation
to Python, a common programming language. Python was chosen since it and
Loke had similar syntax. The aim of the test was to evaluate how well Loke and
and its design elements worked. This test had 5 participants, of which all were
experts. The tasks used in the test can be seen in Appendix C

Before the test started the participants were given a preparation document.
The document informed them that the interview would be recorded, what the
goals of the test were and how the test was structured. Finally there were two
links to YouTube-videos of syntax primers for each of the languages. These
syntax primers were created specifically for this test and had information on all
the syntax that would be necessary to know to solve the tasks of the test.

During the interview, the participants were assigned one of the languages
in which to solve task 1 to 4. Half were assigned to Loke and half to Python.
Afterwards, they were given time to express their first impressions about the
experience. Then the participants were given the other language in which to solve
task 5 to 8. Here too the participants were able to relay their first impressions.
Then each participant answered a form where they numerically estimated how
it was to work in each language and how easy it was to learn each language.
Then the participants were asked specific and general questions about Loke and
its user interface. Finally, the participants were given the opportunity to freely
express opinions and ask questions about Loke.

7.1 Result

The participants liked most of the concepts in Loke. Some features, like the
perpendicular growth of if-statements, did however split the participants in
weather they liked it or not. There were also some problems with readability of
some parts of the user interface.

7.1.1 If-statements

The perpendicular growth of if-statements worked fine for the programming
tasks of the test, according to the participants. Many participants were however
worried that the code would become hard to read if more if-statements were
to be added, if the conditions would be longer or if the if-statements’ contents’
would be wider. One participant liked the perpendicular growth because it
allowed them to visualize the if-statements as diverging paths rather as a single
line, which was more in line with how they thought of if-statements in code.
Another participant did however dislike the perpendicular growth for the same

51

reason, since visualizing the code as diverging paths made it more difficult to
know in which exact order the blocks would be executed in.

7.1.1.1 Discussion

The perpendicular growth of if-statements has been polarizing among partici-
pants in all tests. Many participants either strongly like or dislike the feature.
For that reason perpendicular growth might not be a suitable replacement for
parallel growth, but maybe rather a feature that could be toggled.

In programming in general there is often a trade-off between the code being
close to how machines work, to make it easier to understand what the machine
actually does, and being close to how humans think, to make it easier to intu-
itively understand how to code. From the results it can be seen that participants
viewed perpendicular growth to lean more into being how humans think rather
than how the machine thinks. Different applications and users value the two
directions differently. The goal of Loke is to be able to quickly write smaller pro-
grams for machine and camera automation and to make sure that even Novices
understand the programs. Thus it might be more important for the programming
to be intuitive than for the user to understand exactly how the code works.

Participants were worried that the if-statements would become difficult to
read if a lot of cases were to be added. It is important to remember that if-
statements also become difficult to read when using the orthodox way of writing
them. The problem is not that perpendicular case growth becomes difficult
to read, but rather how much more or less difficult to read in contrast to the
orthodox method.

7.1.2 Optional Typing

Some participants did not understand the optional typing field at first. The
function of the optional typing field was not obvious. One participant disliked
having optional typing and either wanted to have typing required or no typing.

7.1.2.1 Discussion
In Loke the optional typing field is always shown, even if no type has been
chosen. This causes unnecessary visual clutter for users that don’t use typing.
This is a general problem with using graphical elements for coding. With text
code, one can hide unused features by not having the user type them out, but
while using graphical elements, there always has to be some button or text field
to utilize all functionality. This causes a visual clutter to the code. Unused

52

features could be hidden in graphical elements, but that could make them hard
to find once the user wants to use them.

7.1.3 Block Snapping

The participants snapped the blocks together with ease. All participants did
however try to drop a new block on top of two already connected block to insert
the new block between the old blocks. This was not an implemented feature
which caused frustration.

7.1.3.1 Discussion
This design of blocks had fewer problems than previous. In previous designs
it looked like the blocks could be connected even if they were not aligned in
the horizontal axis. When participants tried to snap together blocks they placed
them in such way that the blocks’ triggers did not touch, causing them to fail
to snap. With this design, it looks like the blocks only can be snapped together
when completely aligned. In the test no participant failed to snap two blocks
together, so it seems like this design better conveys how the blocks should be
snapped together.

Inserting a block between two connected blocks by dropping the block be-
tween them should be a feature in Loke, but there was no time to implement
it.

7.1.4 Help Menu

The participants used the Help Menu in varying amounts and used different
features of the Help Menu. The features that were used were: to see what
variables that were in scope, to see how the syntax worked and clicking to insert
text. No participant expressed that the Help Menu was in the way or annoying.

7.1.4.1 Discussion
The Help Menu provided good support to the participants and was not intrusive.
Having a contextual Help Menu seemed to reduce confusion and uncertainty
while typing. It is however important to note that all participants where new
to Loke, and they might have thought that the menu was more intrusive or
annoying if they had worked with Loke for longer. For users new to the program
it does however seem to be beneficial to have a menu to help with syntax.

53

7.1.5 Text Fields in Blocks

In general the participants liked having text fields inside the blocks as opposed
to specifying the blocks functionality by inserting additional blocks. Being able
to write mathematical and logical expressions using text instead of using blocks
provided more freedom.

7.1.5.1 Discussion
It is not surprising that experienced coders prefer to write mathematical ex-
pressions with text rather than with blocks, since that is what they are used to.
Novices might have had a different preference since they have less experience
writing math using text. Having blocks might have helped them remember how
to write the code.

For Experts however, writing math and expressions seems more preferable
than using blocks. No test was however done comparing Loke to another visual
scripting language without text fields, which means that it is not possible to say
that the usage of text fields is definitely better than using blocks.

7.1.6 Text Wrapping

The text fields in Loke did not wrap around. The participants noted that that
could create unpleasantly wide chunks of code.

7.1.6.1 Discussion
Text wrapping would be an important future feature for Loke. One of the bigger
problems with having perpendicular growth of if-cases is that the cases are so
wide, meaning that a user only can have a couple cases on the screen at the
same time. When the content of the if-cases can not wrap, these problems are
exacerbated.

7.1.7 Color Scheme

The colour scheme made it difficult to read some text. The colours were a bit
busy and grabbed a bit too much of the viewers attention, rather than the text
within them.

7.1.7.1 Discussion
The colour scheme was not the focus of this project, but it was still a part of the
development process. One difficult part of having coloured blocks compared to
coloured text is that the colours become much more intense using blocks. The
area of a block is much larger than that of the letters of a word, which makes its

54

colours more prominent and makes them pop out more. However, when every
part of the interface pops out, it becomes difficult to focus and read the single
elements. A different colour scheme would have to be used to make it easier to
focus on the correct parts of the interface.

7.1.8 Function Creation

The participants liked the function creation process. It was intuitive to create
new functions, to change the name of functions, to add inputs to functions and
to use the functions. The tasks of the test did not require the participants to
use the return function with outputs, but some used it anyway. The output
creation process did not seem to be a problem for the participants that used it.
One of the participants that did use outputs said that they liked that one could
have multiple outputs. One perk of having a two dimensional work space was
that functions that were connected to each other could be positioned together.
One participants also expressed joy over the fact that they could use names
for functions that included spaces and special characters. The participants did
however think that the way of deleting inputs from a function was unintuitive.

7.1.8.1 Discussion
The input deletion process has to be overhauled. It is too unintuetive and
cumbersome in its current state. The output functionality was not thoroughly
enough tested for any hard conclusions to be drawn about it. The other parts
of the function creation design worked well. It has a balance between showing
enough information so that users know how to do things while at the same time
not overwhelming the user with information.

7.1.9 Loops

The participants liked the for-loop in Loke. The for-loop block contained the
entire for-loop, so there was no risk of forgetting some part of the syntax. One
participant expressed that they preferred the Loke for-loops over the Python
for-loops since the Loke for-loops were explicit with the range that they iterated
over.

7.1.9.1 Discussion
One benefit with block-scripting over text-scripting is that the blocks can do
most of the syntax for the user. For the Loke for-loops, the user does not have
to remember to insert brackets or colons and indentation is done automatically.
Showing the start- and end-points of the iteration also gives a good overview for
the user.

55

One problem with the Loke for-loops is that they are not well equipped to
iterate over arrays or lists. The benefit of the Python style for-loop is that it is a
fast and intuitive way of iterating over a range of objects. There are however no
arrays or lists yet in Loke, so no design work has been done to make the program
work well with them.

7.1.10 Unfinished Code Chunks

Many participants felt that the code they wrote felt ”unfinished” without putting
a return block at the bottom of the code chunks. They explained that the hollows
at the bottom of the blocks made it look like something more should be put there,
kind of like an unfinished building.

7.1.10.1 Discussion
This problem might had fixed itself if the participants had worked for a longer
period of time in Loke. All of the participants have experience with text program-
ming, and thus have preconceived notions of how code should look. In C++ for
example, all functions are ended with a return and all functions are encapsulated
with brackets. With more experience in Loke, the feeling of unfinishedness might
have disappeared, since they would have internalized how correct code should
look.

Visual scripting languages like Scratch and Blockly have a similar stud/hol-
low design to Loke for its blocks, and there the designs seems to work well. It
could be the case that the studs/hollows in Loke are more confusing than in
those languages. Scratch and Blockly do however have inexperienced program-
mers as their target demographic, so the participants in this test might have had
the same feelings of unfinishedness in those programs as well. More research
would have to be done to understand the effect of the stud/hollow design in
Loke.

7.1.11 Multiple Start Blocks

Some participants were unsure if they could use multiple start blocks. Once they
understood that they could, they in general liked it. One participant said that
they liked having multiple start blocks because it was like built in threading.

7.1.11.1 Discussion
The comment about multi-threading is somewhat problematic. Loke does not
have any back end, it is only an interface. It is presumptuous to assume that the
back end would support multi-threading when no work has been done on the

56

back end yet. It is not dangerous for users to think that there is multi-threading
when the program is single-threaded, but neither is it good that the intuitive
understanding of a system is incorrect. It could case users to think that there are
different computational capabilities than there are.

Scratch also has unlimited number of start-blocks, and in that program it
works well. Being able to split up code and put it together with the other pieces
of code that it relates to is good for readability. It can however lead to silent
bugs, where for example a variable is given a value in one start block, and the
same variable is used in another start block. It is not clear if the conveniences of
having multiple start-blocks out-weight the consequences.

7.1.12 Block Parsing

The function blocks were a bit difficult to parse, some participants said. The
function name blended together with the other parts of the block, so it was
difficult to quickly see the name. Additionally, one participant said that there
existed no clear signal to what was input fields and what was output fields,
which made the blocks confusing.

7.1.12.1 Discussion
It is important that the name of a function is clearly visible. It is the name that
describes what the function does and in what context it should be used. In
Loke, function names are very subtle. They are the same size and have the same
thickness as other text parts of the block. Outputs and text fields are also a lot
more colourful, which draws attention to them instead. This all makes it hard to
read the function names.

The three part stack of input, name and output did make the blocks more
compact, but compactness does not always mean that something is more read-
able. The blocks might have too much information within a small area, making
it difficult to separate out the different parts.

The input and output were not explicitly labeled as such, but this is also
the case in text-programming. With enough experience users would probably
internalize what parts of the blocks that were input and output.

7.1.13 Forgetting Quotation marks

Almost every participant forgot to put quotation marks around their strings
when writing a ’Hello World!’-program, even though they were all experienced
programmers. They did however notice their mistake and used quotation marks
for the rest of the tasks. Some participants noticed their mistake by seeing that
the exclamation point and the text were coloured differently. The print function

57

did not have an explicit type as input; the input was only labeled ’text’. The
participants explained that they thus viewed it as a pure text field; something
that was already encapsulated by quotation marks.

7.1.13.1 Discussion
This problem might have occurred because the ’Hello World!’-program was the
participants’ first task, and that they thus were new to the program and still
learning it. By simply writing ’text’ the input might have looked like a normal
text field on for example a web page, and the participants thus filled it in how
they are used to filling in those kinds of text fields.

7.1.14 Hidden information

Some participants felt like too much information was hidden in Loke. They felt
like there were too many cases in which they did not know how the program
would react.

7.1.14.1 Discussion
As mentioned in the Discussion part of section 7.1.1 If-statements, there is often a
trade of between code being close to how machines work and being close to how
humans think. Some of the information was hidden to protect the user from too
much information. Some behaviours of the program were however undefined
because they had not been developed properly yet.

7.1.15 Time to Find Block

One participant commented that it took too long time to get a block that you
already knew the name of. In text code, one could simply write the function
name, but in Loke, one would need to search the block menu by hand for the
specific block. In the form of the test participants had diverging opinions about
ease of finding blocks. Three participants thought that it was easier to find
and use code in Loke than Python while the two other participants thought the
opposite.

7.1.15.1 Discussion
As mentioned in Chapter 7.1.12 Block Parsing, there is a problem with readability
of the function names in Loke. Fixing this could alleviate some of the problem
with the time it takes to find the blocks. Another feature that probably would
help with this problem is a search functionality to help users find blocks.

58

Different people also seem to like blocks and text differently when it comes
to finding and using the code that they are looking for. A reason for this could be
that the two ways require different actions from the users: text requires the user
to remember the code while blocks require the user to find the code. If a user
already knows the code that they want to use, it becomes annoying to search for
it. If they do not know it, it becomes annoying to have to remember it instead of
just looking in a list. A search functionality could make both of these groups of
users content.

7.1.16 Messy Programming

Some participants noted that the Work Space looked messy in comparison to
text programming. This was supported by the answers to the form of the test,
where all participants had answered that Loke looked more messy than Python.
In text editors, the code is by nature aligned and equally spaced. In Loke, blocks
could be put anywhere, which caused a mess.

7.1.16.1 Discussion
Visual programming in general have a tendency to look a bit messy, but there
are ways to alleviate it. In Unreal Engine Blueprints and Scratch there are for
example ways to automatically space out and align nodes and blocks in the
program. Loke does not have any such features, which makes is so that the user
have to clean up the Work Space instead. The problems with the busy colour
scheme and the difficulty to read function blocks also accentuates the feeling of
the Work Space looking messy.

7.1.17 Time to code

Figure 37 shows the time it took to complete the tasks of the final evaluation. In
the form of the test three participants answered that it felt like Python was faster
to program in, while two thought the opposite.

59

Figure 37: The time it took to for participants to complete each task in Python and Loke
visualized with box and whisker plots. The boxes show the range from the first quartile
to the third quartile, while the line within the box shows the median of the task’s times.
The whiskers show the minimum and maximum times. Stars are considered outliers.
The plots are divided into pairs corresponding to the different tasks. Task 1 is the ’Hello
World!’-program, Task 2 is to see if a number is prime, Task 3 is to create and use a
function and Task 4 is to design a control sequence for a real world application. The
blue boxes represent the time it took to complete the task in Python, while the green
represents the time it took in Loke.

7.1.17.1 Discussion
Figure 37 and the form show no definitive difference in programming speed
when comparing Loke and Python. However, since only five participants were
a part of the test, no statistically significant conclusions can be drawn from the
data.

It could be argued that a bar chart with standard deviation shown would
be a better way of visualising the data of Figure 37 since box and whisker plots
often are used for discreet data.But even if the data used is continuous, box
and whisker plots do have some advantages over bar charts. Firstly, box and
whisker plots show outliers in the plot and separates them from the rest of
the data. Outliers can significantly skew mean values and standard deviations
when a small number of data points are used, which in this case could result

60

in misrepresentation of the data. Secondly, using medians and showing the
distribution using quartiles more accurately portrays how the data is distributed
than mean values and standard deviations.

8 Discussion

Loke have tested multiple features that relate to the design of a visual scripting
language. Many of the features were received well by test participants and
could be studied further to see how they could be introduced into all kinds of
programming languages and development environments.

8.1 Code growth directions

In Loke, code growth direction was explored in the form of perpendicularly
growing if-cases; the cases grew horizontally, while the rest of the code grew
vertically. The goal was to evoke the same feeling as a flow-chart diagram where
diverging paths and choices are shown in parallel as opposed to code where they
are shown in series.

In Test 5 in Chapter 4.5 it was shown that users have strong but diverg-
ing opinions whether they like perpendicularly growing if-cases or not. Some
strongly like it and others strongly dislike it. In the final evaluation in Chapter
7, participants that liked it said that it allowed them to write code that better
corresponded to how they thought of code in their head while participants that
disliked it said that it made the code look messy, it made it difficult to understand
the order of operation and that it was too far away from how the code would be
processed by the computer. When asking people who program as their day-job
in Test 7 and 8 in Chapter 4.7 and 4.8 respectively, perpendicularly growing
if-cases were viewed in favour by the majority. They argued that it made it easier
to get an overview of the code when unused screen space was utilized. One
participant said that they would have liked perpendicularly growing if-cases as
a plug-in for writing text code. In every test that has concerned perpendicularly
growing if-cases, participants have however said that they were concerned with
readability of the code if the cases grew too wide.

Having perpendicularly growing if-cases fits more code on the screen at
the same time, which can make it easier to get an overview and make it look
more like how humans think of choices. This can however also put too much
information on the screen at once and make the code difficult to read.

61

8.2 Help with syntax

One big difference with Loke compared to other visual scripting languages is
that math and logical expressions are written with text rather than with graphical
elements. To aid with this a Help Menu for syntax was explored. The Help Menu
was successful in providing support for the participants and did so without
being intrusive, according to the participants of the Final Evaluation in Chapter
7.1.4. It is however possible that users could become too reliant on the Help
Menu and not actually learn the syntax since the Help Menu solves that for
them. If the user eventually wants to remove the Help Menu this could become
a problem. It is also possible that users would work slower since they have
to look at the help menu when they want to write math or logical expressions.
Additionally, even though the menu was not perceived to be intrusive, it does
cover up a portion of the screen, reducing the amount of code you can see at a
time. The boon of not having to switch screens or programs to look up syntax
can however speed up the coding process. It is unclear exactly how serious the
negative effects are of having a Help Menu, but the positive effects show that
there is great potential to help beginners of a language code by using a Help
Menu for syntax.

The syntax of chaining together functions into programs was solved by
visually designing the blocks to look snappable. The blocks have a similar
affordance to LEGO-blocks with their studs and hollows which makes the user
intuitively understand how to connect two blocks. No participant had any
problems with snapping blocks together in the Final Evaluation.

8.3 Node design

The nodes were designed to be as compact as possible, with the input, name
and output being placed as a stack. This choice came from the results of Test
6 in Chapter 4.6, where most participants said that they preferred this type of
structure and liked that the design was so compact. As discussed in that chapter,
this result could however be a misrepresentation of the participants’ opinions
since some of the other designs had issues with breaking conventions and being
hard to read on a Google Form. In the Final Evaluation of Chapter 7, some
participants noted that the function blocks were difficult to read and in particular
that it was difficult to read the names of the functions. This could be a problem
of the stack-design, since the function name is positioned between two chunks
of text, which could hide it. It could also be a problem of the colour scheme
and the distinctness of lines and text. When designing the blocks, the inputs
and outputs were heavily showcased and made to grab focus. It is however
possible that the name of a function actually is more important than both input

62

and output. Making the function name stand out maybe would have fixed some
of the readability problems

The blocks’ variables, text fields and variable types have different colours to
that of each other and to the block. This made these components more distinct
and they grabbed the users focus with colour. Focus however needs to be placed
on the correct elements of a user interface. The variable declaration with its
white text on turquoise background grabbed perhaps too much focus while
at the same time making it hard to actually read the variable name. The dark
gray text fields also contrasted significantly with the bright pastel colours of the
blocks, grabbing a large amount of focus, even when nothing was written within
them. Contrasting colours needs be used where there is importance, not just
where there are different elements. The colour scheme of Loke would have to be
revised to properly showcase the important information of each block.

In Loke, math and logical expressions are written with text rather than with
graphical elements. Math and logical expressions are in programming already
written in a way that is close to how humans think of math, and it is thus more
effective to simply let users type it out than to use blocks. In Test 5 of Chapter
4.5, participants said that they preferred seeing expressions written out as text
rather than as just information flows. In Test 9 and 10 as well as in the Final
Evaluation, participants said that they liked the freedom of being able to simply
write the math and logical expressions instead of having to find and connect
each component from the Block Menu. It is possible that having to write math
and logical expressions is more difficult for inexperienced programmers than
using graphical elements, which could be a downside.

8.4 Variables

In Loke, variables are written as text as opposed to being graphical elements. The
reason for this is because math and logical expressions already are written with
text in Loke. Participants did however also state that they liked when variables
were explicitly written out both were they were defined and used, in Test 5. They
argued that it made it easier to see which variable that was being used which
reduced mental strain.

One of the boons of using graphical elements is that users do not have to
remember or correctly type out variable names, they simply drag and drop them.
One of the goals with the Help Menu was to provide a similarly feeling feature.
The Help Menu has buttons for each variable that is in scope where the user
is writing. Clicking one of these buttons inserts the variable where the user
has its text cursor. In the Final Evaluation in Chapter 7, participants stated that
they liked this feature because it allowed them to not worry about writing the

63

variables correctly. Being able to see which variables that were in scope was also
appreciated by the participants. Users can also see if a variable is in scope by
looking at its colour when it is written in a text box. Recognised variables get
a turquoise colour, while unrecognised are white. During Test 9, Test 10 and
the Final Evaluation, this feature made some participants realize when they had
used out of scope variables.

In some earlier designs, lines were drawn between where a variable was
declared and where it was used in order to show the flow of information. This
feature was however discarded since the lines obstructed the code that was
underneath them. When trying to show information, one has to be careful to
not show too much at a time, as it can make overload the interface and make it
difficult to read.

8.5 Automation

One of the benefits of using visual scripting is that a lot of syntax can be incor-
porated into the blocks. One example is the loop-block in Loke, which contains
the syntax of where the loop starts and ends in the code, which in text program-
ming often is done using brackets and/or indentation, and by default have loop
iteration variables already defined. This frees up the user from having to spend
energy to create the loop-blocks. Function headers also work in a similar way.
They come with text fields and buttons for all the things that is needed for a
function. The function block is also automatically placed in the Block Menu.
This creates a sort of self-guided experience to creating functions that reduces
cognitive load.

In Loke, some blocks can be changed to other similar types of blocks while
they are in the Work Space rather than having to drag out the other type of block
from the Block Menu. The loop-block can be toggled between being a while-loop
and a for-loop using a drop-down menu. This reduces the amount of clicks
required to change between them. The if-blocks are on the other hand contextual.
If an if-block is placed to the right of another if-block it automatically changes to
an if else-block. This saves a lot of time and cognitive load since the user does
not have to change the actual if-blocks when they restructure their if-statements.

Return statements in Loke can return multiple outputs, but the names, types
and number of outputs have to be consistent for a function. To aid with this,
if a function has multiple return blocks and one of them is changed, all other
return blocks mirror that change. This mirroring only changes output names,
types and the number of outputs. This prevents the user from having conflicting
definitions of the output of the function, avoiding potential errors.

In text programming, users often have to create a variable that catches the

64

output of a function. In Loke, these outputs are automatically put into variables
on the function block itself. This saves some time, but more importantly it
exposes what the function actually returns.

8.6 Method

A total of 11 user tests were used in the development process of Loke. These
tests were helpful for understanding how users perceived the created designs,
which can be difficult when the designer also is the one supposed to evaluate
the designs. The tests gave feedback about flaws in designs and gave direction
in what people in general preferred. The Exploratory tests were quite short
and focused. They could be done on a phone and only required a few minutes.
This made it easy for people to participate in the tests, which resulted in more
participants and more data and feedback. Having small and focused tests also
made it possible to test one idea at a time and allowed for quick changes if
something did not work out. The tests took time and effort to create and analyze,
but the feedback they gave was well worth this. This style of rapid testing
worked well when designing an interface with many smaller sub-interfaces.

No active measures were taken to ensure diversity among participants of
the tests in this project. The Exploratory tests were mostly shared through
social media and were anonymous, but by looking at the social spheres in
which it was shared, the participants where probably mostly Swedish university
students. This could have made the results of the tests non-generalizable, since
other groups of people might have different opinions on design. Two of the
Exploratory tests, Test 7 and 8, did however focus on the opinions of professional
programmers. Both university students and professional programmers are
within the target audience of Loke, which probably makes the results of all the
tests generalizable enough.

The programming knowledge of participants was recorded and used to
divide participants into Novices and Experts. The programming knowledge was
based on self evaluation of how often the participants coded, which is easier for
participants to estimate rather than the abstract concept of programming skill. In
all tests with both Novices and Experts, the results were checked to see if there
were any diverging opinions between the two groups. No diverging opinions
were shown in any of the tests. Having this information made it possible to see
if dislike for a design came from the design being bad, or from the participant no
knowing how programming works.

No other factors than programming knowledge of participants were deemed
interesting to record; factors such as gender, socioeconomic background, race
and other should not have a detectable impact on the participants opinions on

65

programming language design. Age is a factor that could have been interesting
to record, but age was implicitly recorded by looking at which groups the tests
were shared with. The test shared through social media reached people aged
roughly 19 to 30, while Test 7 and 8 reached older people.

No statistically significant conclusions can be drawn from any of the tests,
but despite this it is still possible to use the tests and their results to get valuable
insight. The tests were used to provide guidance to the design and get a general
feel for how people thought of the designs, not to statistically prove that one
design is better than another. It could be argued that even though the goal was
not to gain statistical significance, the number of users for some of the tests were
too low, for example Test 3 had 2 participants and the Final Evaluation had 5
participants. Jakob Nielsen states that a single tester often finds 20 to 51 percent
of all the problems with a design and that this means that with 3 to 5 participants
most of the usability problems with a design can be found [9]. The purpose of
the tests were in general to find what worked badly, and thus a smaller sample
size is good enough at finding the problems. Test 3 is also an edge-case, since
it was a follow-up on the previous test, which meant that a lot of Test 2’s data
could be used for Test 3’s analysis as well.

Interviews were performed and interpreted by a single person. This could
affect the reliability of the results negatively since it only uses one perspective.
Having multiple people analyze the same interview would have allowed for
more nuance to be extracted from the interviews.

The Final Evaluation only compared Loke to a text programming language,
Python. It would however have been interesting to see how it compared to
another existing visual scripting language, such as Scratch or Unreal Engine
Blueprints.

8.7 Future Work

Perpendicular growth of if-statements have to be tested with more users and
for a longer time to properly see how it affects the user experience. It could also
be interesting to test a plug-in for a text editor to have perpendicular growth of
cases for text code and to see what effect that it has on the user experience.

Having text fields for math and logic inside blocks rather than having to
write it with blocks provided more freedom for Experts, but it is unclear how it
would affect Novices. Additional user tests with Novices are required to fully
understand the consequences of having text fields.

The participants of the final evaluation thought that the studs and hollows
for connecting blocks made it look like code chunks felt unfinished. Tests would
have to be done with both Novices and Experts where block designs of Loke

66

and other visual scripting languages were compared to see if this problem is
inherent to the Loke design or if it comes from the fact that Experts are used to
code looking a certain way.

Having multiple start and update blocks have some upsides, but additional
research would have to be done to fully understand what effects it has on the
user experience and the safety of code developed using it.

Loke can not execute programs created in it. This made it difficult to test the
intuitiveness of the designs since users do not get feedback when they create
incorrect code. Making Loke able to execute code would expose some of the
currently hidden problems with its design which would allow the designs to be
improved upon.

67

9 Conclusion

Code growth direction can be used differently in visual scripting than text
programming. If-statements can for example be made to grow perpendicularly
to the rest of the code, which gives it a look and feel similar to flowcharts, which
is more similar to how a lot of people visualize choices and options internally.
By letting code also grow perpendicularly, more code can be fit on the screen at
once, which can make it easier to get an overview of the code but with the risk
of showing too much information on the screen at once and overwhelming the
user.

Having a Help Menu that shows the user what syntax they can use proved
to be an effective way of making users write syntax correctly. It is however un-
known how having a Help Menu affects how easy it is to learn and remember the
syntax. The syntax of stringing graphical elements together to form a sequence
can be made easier by developing a visual design that has afforance of being
connectable in the intended way, and to ensured that it does not have afforance
of being able to be connected in any other way.

The important parts of programming block needs to be highlighted with
colour, contrast and shape. It is important to analyze what parts of the block that
are the most interesting to the user, and highlight those the most. Additionally,
since every part of the block is useful, no part should be designed in such a way
that it steals all the focus from the other parts. A way to create compact blocks
that have all information condensed in a small but readable area is to stack input,
block name and output on top of each other, in that order. This allows the users
to see all information regarding the block in the same view, but it could however
have the side effect of making the function name difficult to read.

When visualizing and organizing variables in a visual scripting language,
it is important to help the user to know what variables they can use, to know
which variables that are in scope, and to help the user use the variables without
fear of misspelling. This can be achieved by having a Help Menu that shows
all variables that exists in the scope that the user is writing in, with buttons that
insert the variables with correct spelling and syntax. It is also important to write
out the variables’ names when they are used to ensure that the user know where
the data is comming from.

Code that is commonly used together, or that requires a certain syntax that
always is the same, can be baked into a single block. This reduces the number of
parts that the user needs to keep track of, which reduces mental load. Features
that have different versions of themselves, such as different types of loops and
if-, if else- and else-cases, can be made to either change between each other by
context or by a user action such as clicking a toggle. This is faster than having to
drag out a different kind of block from a menu.

68

References

[1] Michael Coblenz, Jonathan Aldrich, Brad A. Myers, and Joshua Sunshine.
Interdisciplinary programming language design. In Proceedings of the 2018
ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software, Onward! 2018, page 133–146, New
York, NY, USA, 2018. Association for Computing Machinery.

[2] Michael J. Coblenz, Gauri Kambhatla, Paulette Koronkevich, Jenna L. Wise,
Celeste Barnaby, Jonathan Aldrich, Joshua Sunshine, and Brad A. Myers.
User-centered programming language design in the obsidian smart contract
language. CoRR, abs/1912.04719, 2019.

[3] Igor Moreira Felix, Lucas Mendes Souza, Bernardo Martins Ferreira, and
Leonidas de Oliveira Brandao. A study to build a new visual programming
system: Fixed or contextual menu?. 2019 IEEE Frontiers in Education Con-
ference (FIE), Frontiers in Education Conference (FIE), 2019 IEEE, pages 1 – 8,
2019.

[4] Interaction Design Foundation. User experience (ux) design. https://

www.interaction-design.org/literature/topics/ux-design. Accessed:
2021-10-31.

[5] J.L. Fuertes, L.F. Gonzalez, and L. Martinez. Visual programming languages
for programmers with dyslexia: An experiment. 2018 IEEE 14th Interna-
tional Conference on e-Science (e-Science), e-Science (e-Science), 2018 IEEE 14th
International Conference on, E-SCIENCE, pages 145 – 155, 2018.

[6] Maria Hjorth. Strengths and weaknesses of a visual programming language
in a learning context with children. 2017.

[7] Gerti Kappel, Jan Vitek, Oscar Nierstrasz, Simon Gibbs, Betty Junod, Marc
Stadelmann, and Dennis Tsichritzis. An object-based visual scripting envi-
ronment. Object Oriented Development, Tsichritizis, Ed. Centre Universitaire
d’Informatique, Universite de Geneve, pages 123–142, 1989.

[8] Brad A. Myers, John F. Pane, and Andy Ko. Natural programming lan-
guages and environments. Communications of the ACM, 47(9):47 – 52, 2004.

[9] Jakob Nielsen and Rolf Molich. Heuristic evaluation of user interfaces. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Sys-
tems, CHI ’90, page 249–256, New York, NY, USA, 1990. Association for
Computing Machinery.

69

[10] Donald A. Norman. The design of everyday things. Basic Books, 2002.

[11] tutorialspoint. Cobol conditional statements. https://www.

tutorialspoint.com/cobol/cobol_condition_statements.htm. Ac-
cessed: 2021-04-20.

[12] Guido van Rossum. Python faq: Why was python created in
the first place? https://docs.python.org/3/faq/general.html#

why-was-python-created-in-the-first-place. Accessed: 2021-01-22.

[13] A.M. Winn and T.J. Smedley. Multimedia workshop: exploring the benefits
of a visual scripting language. Proceedings. 1998 IEEE Symposium on Visual
Languages (Cat. No.98TB100254), Visual Languages, 1998. Proceedings. 1998
IEEE Symposium on, pages 280 – 287, 1998.

70

A Test 9: programming scenarios

A.1 Scenario 1: Is Odd

You want to code a function that takes a variable X as input and determines
whether or not it is odd.

The function header is given in the list to the left. The function should return
true if X is odd, and false if X is even.

A.2 Scenario 2: Temperature

You want to create a function that checks if the temperature of a machine is okay.
The function header is given in the list to the left. The function should print

“machine off” if the temperature is below 10 celsius, “machine running” if the
temperature is between 10 and 100 celsius and “Warning! Machine overheating!”
if the temperature is above 100 celsius.

A.3 Scenario 3: Camera

You want to create a function that initializes a camera. There are three different
types of cameras: “normal”, “wide” and “fisheye”. Each type of camera is
initialized a bit differently.

The function header is given in the list to the left.
A “normal” camera should be initialized with the given angle as it is.
A “wide” camera should be initialized with double the given angle.
A “fisheye” camera should be initialized with 0 if the given angle is below

180, and with 180 if the given angle is above 180.
The program should print “Error! That is not a type!” if the given type is

neither “normal”, “wide” or “fisheye”.

A.4 Scenario 4: Camera looking direction

You want to create a program that prints the direction that a camera is looking
in. The looking directions are “forward”, “right”, “back” and “left”.

‘yaw’ is an object’s rotation around its up-axis. It is the rotation you make
when you look from side to side or shake a “no” with your head.

If the camera has the following yaw, it is considered to look in the following
direction:

0 to 90 → “forward”
90 to 180 → “right”
180 to 270 → “back”

71

270 to 360 → “left”

72

B Test 10: programming scenarios

B.1 Scenario 1: Print all numbers

Create a function that, given a positive integer, prints out all integers from 1 to
that number.

B.2 Scenario 2: Camera looking direction

You want to create a program that prints the direction that a camera is looking
in. The looking directions are “forward”, “right”, “back” and “left”.

‘yaw’ is an object’s rotation around its up-axis. It is the rotation you make
when you look from side to side or shake a “no” with your head.

If the camera has the following yaw, it is considered to look in the following
direction:

0 to 90 → “forward”
90 to 180 → “right”
180 to 270 → “back”
270 to 360 → “left”

73

C Final Evaluation tasks

C.1 Task 1

Create a ’Hello World!’-program.

C.2 Task 2

Check if a given integer is a prime number. The program does not have to be
efficient.

C.3 Task 3

Create a function that given an input number x returns a string ”It is x degrees
outside”.

Use this function with the values -10, 5 and 100, and print out the results.

C.4 Task 4

Create a function that automates the control rods of a nuclear reactor. You have
a few preexisting function to help you:

• reactor activity() −→ activity:float

• insert control rods() −→ success:bool

If the activity is above 123 000, print out a warning. If the activity is over 456 000,
insert the control rods.

C.5 Task 5

Same as Task 1.

C.6 Task 6

Same as Task 2.

C.7 Task 7

Create a function that given the time of day in hours prints out if a store is open
or closed. The store is open between 7 and 16.

Use this function with the values 6, 12, and 20.

74

C.8 Task 8

An autonomous truck is driving at a warehouse. The truck has sensors that
can detect how far it is to the next thing in front of it. Create a function that
automates the speed of a car by using the gas when there is nothing within 10
meters in front of the truck and by pressing the break if something is within 5
meters in front of the truck. You have a few preexisting function to help you:

• gas()

• brake()

• front detector() −→meters:float

75

