/* sdnoise1234, Simplex noise with true analytic * derivative in 1D to 4D. * * Copyright © 2003-2011, Stefan Gustavson * * Contact: stefan.gustavson@gmail.com * * This library is public domain software, released by the author * into the public domain in February 2011. You may do anything * you like with it. You may even remove all attributions, * but of course I'd appreciate it if you kept my name somewhere. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. */ /** \file \brief C implementation file for Perlin simplex noise with analytic derivative over 1, 2, 3 and 4 dimensions. \author Stefan Gustavson (stefan.gustavson@gmail.com) */ /* * This is an implementation of Perlin "simplex noise" over one * dimension (x), two dimensions (x,y), three dimensions (x,y,z) * and four dimensions (x,y,z,w). The analytic derivative is * returned, to make it possible to do lots of fun stuff like * flow animations, curl noise, analytic antialiasing and such. * * Visually, this noise is exactly the same as the plain version of * simplex noise provided in the file "snoise1234.c". It just returns * all partial derivatives in addition to the scalar noise value. * */ #include #include "sdnoise1234.h" /* We strictly don't need this, but play nice. */ #define FASTFLOOR(x) ( ((x)>0) ? ((int)x) : (((int)x)-1) ) /* Static data ---------------------- */ /* * Permutation table. This is just a random jumble of all numbers 0-255, * repeated twice to avoid wrapping the index at 255 for each lookup. */ unsigned char perm[512] = {151,160,137,91,90,15, 131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23, 190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33, 88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166, 77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244, 102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196, 135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123, 5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42, 223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9, 129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228, 251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107, 49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254, 138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180, 151,160,137,91,90,15, 131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23, 190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33, 88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166, 77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244, 102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196, 135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123, 5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42, 223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9, 129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228, 251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107, 49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254, 138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180 }; /* * Gradient tables. These could be programmed the Ken Perlin way with * some clever bit-twiddling, but this is more clear, and not really slower. */ static float grad2lut[8][2] = { { -1.0f, -1.0f }, { 1.0f, 0.0f } , { -1.0f, 0.0f } , { 1.0f, 1.0f } , { -1.0f, 1.0f } , { 0.0f, -1.0f } , { 0.0f, 1.0f } , { 1.0f, -1.0f } }; /* * Gradient directions for 3D. * These vectors are based on the midpoints of the 12 edges of a cube. * A larger array of random unit length vectors would also do the job, * but these 12 (including 4 repeats to make the array length a power * of two) work better. They are not random, they are carefully chosen * to represent a small, isotropic set of directions. */ static float grad3lut[16][3] = { { 1.0f, 0.0f, 1.0f }, { 0.0f, 1.0f, 1.0f }, // 12 cube edges { -1.0f, 0.0f, 1.0f }, { 0.0f, -1.0f, 1.0f }, { 1.0f, 0.0f, -1.0f }, { 0.0f, 1.0f, -1.0f }, { -1.0f, 0.0f, -1.0f }, { 0.0f, -1.0f, -1.0f }, { 1.0f, -1.0f, 0.0f }, { 1.0f, 1.0f, 0.0f }, { -1.0f, 1.0f, 0.0f }, { -1.0f, -1.0f, 0.0f }, { 1.0f, 0.0f, 1.0f }, { -1.0f, 0.0f, 1.0f }, // 4 repeats to make 16 { 0.0f, 1.0f, -1.0f }, { 0.0f, -1.0f, -1.0f } }; static float grad4lut[32][4] = { { 0.0f, 1.0f, 1.0f, 1.0f }, { 0.0f, 1.0f, 1.0f, -1.0f }, { 0.0f, 1.0f, -1.0f, 1.0f }, { 0.0f, 1.0f, -1.0f, -1.0f }, // 32 tesseract edges { 0.0f, -1.0f, 1.0f, 1.0f }, { 0.0f, -1.0f, 1.0f, -1.0f }, { 0.0f, -1.0f, -1.0f, 1.0f }, { 0.0f, -1.0f, -1.0f, -1.0f }, { 1.0f, 0.0f, 1.0f, 1.0f }, { 1.0f, 0.0f, 1.0f, -1.0f }, { 1.0f, 0.0f, -1.0f, 1.0f }, { 1.0f, 0.0f, -1.0f, -1.0f }, { -1.0f, 0.0f, 1.0f, 1.0f }, { -1.0f, 0.0f, 1.0f, -1.0f }, { -1.0f, 0.0f, -1.0f, 1.0f }, { -1.0f, 0.0f, -1.0f, -1.0f }, { 1.0f, 1.0f, 0.0f, 1.0f }, { 1.0f, 1.0f, 0.0f, -1.0f }, { 1.0f, -1.0f, 0.0f, 1.0f }, { 1.0f, -1.0f, 0.0f, -1.0f }, { -1.0f, 1.0f, 0.0f, 1.0f }, { -1.0f, 1.0f, 0.0f, -1.0f }, { -1.0f, -1.0f, 0.0f, 1.0f }, { -1.0f, -1.0f, 0.0f, -1.0f }, { 1.0f, 1.0f, 1.0f, 0.0f }, { 1.0f, 1.0f, -1.0f, 0.0f }, { 1.0f, -1.0f, 1.0f, 0.0f }, { 1.0f, -1.0f, -1.0f, 0.0f }, { -1.0f, 1.0f, 1.0f, 0.0f }, { -1.0f, 1.0f, -1.0f, 0.0f }, { -1.0f, -1.0f, 1.0f, 0.0f }, { -1.0f, -1.0f, -1.0f, 0.0f } }; // A lookup table to traverse the simplex around a given point in 4D. // Details can be found where this table is used, in the 4D noise method. /* TODO: This should not be required, backport it from Bill's GLSL code! */ static unsigned char simplex[64][4] = { {0,1,2,3},{0,1,3,2},{0,0,0,0},{0,2,3,1},{0,0,0,0},{0,0,0,0},{0,0,0,0},{1,2,3,0}, {0,2,1,3},{0,0,0,0},{0,3,1,2},{0,3,2,1},{0,0,0,0},{0,0,0,0},{0,0,0,0},{1,3,2,0}, {0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0}, {1,2,0,3},{0,0,0,0},{1,3,0,2},{0,0,0,0},{0,0,0,0},{0,0,0,0},{2,3,0,1},{2,3,1,0}, {1,0,2,3},{1,0,3,2},{0,0,0,0},{0,0,0,0},{0,0,0,0},{2,0,3,1},{0,0,0,0},{2,1,3,0}, {0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0}, {2,0,1,3},{0,0,0,0},{0,0,0,0},{0,0,0,0},{3,0,1,2},{3,0,2,1},{0,0,0,0},{3,1,2,0}, {2,1,0,3},{0,0,0,0},{0,0,0,0},{0,0,0,0},{3,1,0,2},{0,0,0,0},{3,2,0,1},{3,2,1,0}}; /* --------------------------------------------------------------------- */ /* * Helper functions to compute gradients in 1D to 4D * and gradients-dot-residualvectors in 2D to 4D. */ float grad1( int hash, float *gx ) { int h = hash & 15; *gx = 1.0f + (h & 7); // Gradient value is one of 1.0, 2.0, ..., 8.0 if (h&8) *gx = - *gx; // Make half of the gradients negative } void grad2( int hash, float *gx, float *gy ) { int h = hash & 7; *gx = grad2lut[h][0]; *gy = grad2lut[h][1]; return; } void grad3( int hash, float *gx, float *gy, float *gz ) { int h = hash & 15; *gx = grad3lut[h][0]; *gy = grad3lut[h][1]; *gz = grad3lut[h][2]; return; } void grad4( int hash, float *gx, float *gy, float *gz, float *gw) { int h = hash & 31; *gx = grad4lut[h][0]; *gy = grad4lut[h][1]; *gz = grad4lut[h][2]; *gw = grad4lut[h][3]; return; } /** 1D simplex noise with derivative. * If the last argument is not null, the analytic derivative * is also calculated. */ float sdnoise1( float x, float *dnoise_dx) { int i0 = FASTFLOOR(x); int i1 = i0 + 1; float x0 = x - i0; float x1 = x0 - 1.0f; float gx0, gx1; float n0, n1; float t20, t40, t21, t41; float x20 = x0*x0; float t0 = 1.0f - x20; // if(t0 < 0.0f) t0 = 0.0f; // Never happens for 1D: x0<=1 always t20 = t0 * t0; t40 = t20 * t20; grad1(perm[i0 & 0xff], &gx0); n0 = t40 * gx0 * x0; float x21 = x1*x1; float t1 = 1.0f - x21; // if(t1 < 0.0f) t1 = 0.0f; // Never happens for 1D: |x1|<=1 always t21 = t1 * t1; t41 = t21 * t21; grad1(perm[i1 & 0xff], &gx1); n1 = t41 * gx1 * x1; /* Compute derivative according to: * *dnoise_dx = -8.0f * t20 * t0 * x0 * (gx0 * x0) + t40 * gx0; * *dnoise_dx += -8.0f * t21 * t1 * x1 * (gx1 * x1) + t41 * gx1; */ *dnoise_dx = t20 * t0 * gx0 * x20; *dnoise_dx += t21 * t1 * gx1 * x21; *dnoise_dx *= -8.0f; *dnoise_dx += t40 * gx0 + t41 * gx1; *dnoise_dx *= 0.25f; /* Scale derivative to match the noise scaling */ // The maximum value of this noise is 8*(3/4)^4 = 2.53125 // A factor of 0.395 would scale to fit exactly within [-1,1], but // to better match classic Perlin noise, we scale it down some more. return 0.25f * (n0 + n1); } /* Skewing factors for 2D simplex grid: * F2 = 0.5*(sqrt(3.0)-1.0) * G2 = (3.0-Math.sqrt(3.0))/6.0 */ #define F2 0.366025403f #define G2 0.211324865f /** 2D simplex noise with derivatives. * If the last two arguments are not null, the analytic derivative * (the 2D gradient of the scalar noise field) is also calculated. */ float sdnoise2( float x, float y, float *dnoise_dx, float *dnoise_dy ) { float n0, n1, n2; /* Noise contributions from the three simplex corners */ float gx0, gy0, gx1, gy1, gx2, gy2; /* Gradients at simplex corners */ /* Skew the input space to determine which simplex cell we're in */ float s = ( x + y ) * F2; /* Hairy factor for 2D */ float xs = x + s; float ys = y + s; int i = FASTFLOOR( xs ); int j = FASTFLOOR( ys ); float t = ( float ) ( i + j ) * G2; float X0 = i - t; /* Unskew the cell origin back to (x,y) space */ float Y0 = j - t; float x0 = x - X0; /* The x,y distances from the cell origin */ float y0 = y - Y0; /* For the 2D case, the simplex shape is an equilateral triangle. * Determine which simplex we are in. */ int i1, j1; /* Offsets for second (middle) corner of simplex in (i,j) coords */ if( x0 > y0 ) { i1 = 1; j1 = 0; } /* lower triangle, XY order: (0,0)->(1,0)->(1,1) */ else { i1 = 0; j1 = 1; } /* upper triangle, YX order: (0,0)->(0,1)->(1,1) */ /* A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and * a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where * c = (3-sqrt(3))/6 */ float x1 = x0 - i1 + G2; /* Offsets for middle corner in (x,y) unskewed coords */ float y1 = y0 - j1 + G2; float x2 = x0 - 1.0f + 2.0f * G2; /* Offsets for last corner in (x,y) unskewed coords */ float y2 = y0 - 1.0f + 2.0f * G2; /* Wrap the integer indices at 256, to avoid indexing perm[] out of bounds */ int ii = i & 0xff; int jj = j & 0xff; /* Calculate the contribution from the three corners */ float t0 = 0.5f - x0 * x0 - y0 * y0; float t20, t40; if( t0 < 0.0f ) t40 = t20 = t0 = n0 = gx0 = gy0 = 0.0f; /* No influence */ else { grad2( perm[ii + perm[jj]], &gx0, &gy0 ); t20 = t0 * t0; t40 = t20 * t20; n0 = t40 * ( gx0 * x0 + gy0 * y0 ); } float t1 = 0.5f - x1 * x1 - y1 * y1; float t21, t41; if( t1 < 0.0f ) t21 = t41 = t1 = n1 = gx1 = gy1 = 0.0f; /* No influence */ else { grad2( perm[ii + i1 + perm[jj + j1]], &gx1, &gy1 ); t21 = t1 * t1; t41 = t21 * t21; n1 = t41 * ( gx1 * x1 + gy1 * y1 ); } float t2 = 0.5f - x2 * x2 - y2 * y2; float t22, t42; if( t2 < 0.0f ) t42 = t22 = t2 = n2 = gx2 = gy2 = 0.0f; /* No influence */ else { grad2( perm[ii + 1 + perm[jj + 1]], &gx2, &gy2 ); t22 = t2 * t2; t42 = t22 * t22; n2 = t42 * ( gx2 * x2 + gy2 * y2 ); } /* Add contributions from each corner to get the final noise value. * The result is scaled to return values in the interval [-1,1]. */ float noise = 40.0f * ( n0 + n1 + n2 ); /* Compute derivative, if requested by supplying non-null pointers * for the last two arguments */ if( ( dnoise_dx != 0 ) && ( dnoise_dy != 0 ) ) { /* A straight, unoptimised calculation would be like: * *dnoise_dx = -8.0f * t20 * t0 * x0 * ( gx0 * x0 + gy0 * y0 ) + t40 * gx0; * *dnoise_dy = -8.0f * t20 * t0 * y0 * ( gx0 * x0 + gy0 * y0 ) + t40 * gy0; * *dnoise_dx += -8.0f * t21 * t1 * x1 * ( gx1 * x1 + gy1 * y1 ) + t41 * gx1; * *dnoise_dy += -8.0f * t21 * t1 * y1 * ( gx1 * x1 + gy1 * y1 ) + t41 * gy1; * *dnoise_dx += -8.0f * t22 * t2 * x2 * ( gx2 * x2 + gy2 * y2 ) + t42 * gx2; * *dnoise_dy += -8.0f * t22 * t2 * y2 * ( gx2 * x2 + gy2 * y2 ) + t42 * gy2; */ float temp0 = t20 * t0 * ( gx0* x0 + gy0 * y0 ); *dnoise_dx = temp0 * x0; *dnoise_dy = temp0 * y0; float temp1 = t21 * t1 * ( gx1 * x1 + gy1 * y1 ); *dnoise_dx += temp1 * x1; *dnoise_dy += temp1 * y1; float temp2 = t22 * t2 * ( gx2* x2 + gy2 * y2 ); *dnoise_dx += temp2 * x2; *dnoise_dy += temp2 * y2; *dnoise_dx *= -8.0f; *dnoise_dy *= -8.0f; *dnoise_dx += t40 * gx0 + t41 * gx1 + t42 * gx2; *dnoise_dy += t40 * gy0 + t41 * gy1 + t42 * gy2; *dnoise_dx *= 40.0f; /* Scale derivative to match the noise scaling */ *dnoise_dy *= 40.0f; } return noise; } /* Skewing factors for 3D simplex grid: * F3 = 1/3 * G3 = 1/6 */ #define F3 0.333333333f #define G3 0.166666667f /** 3D simplex noise with derivatives. * If the last tthree arguments are not null, the analytic derivative * (the 3D gradient of the scalar noise field) is also calculated. */ float sdnoise3( float x, float y, float z, float *dnoise_dx, float *dnoise_dy, float *dnoise_dz ) { float n0, n1, n2, n3; /* Noise contributions from the four simplex corners */ float noise; /* Return value */ float gx0, gy0, gz0, gx1, gy1, gz1; /* Gradients at simplex corners */ float gx2, gy2, gz2, gx3, gy3, gz3; /* Skew the input space to determine which simplex cell we're in */ float s = (x+y+z)*F3; /* Very nice and simple skew factor for 3D */ float xs = x+s; float ys = y+s; float zs = z+s; int i = FASTFLOOR(xs); int j = FASTFLOOR(ys); int k = FASTFLOOR(zs); float t = (float)(i+j+k)*G3; float X0 = i-t; /* Unskew the cell origin back to (x,y,z) space */ float Y0 = j-t; float Z0 = k-t; float x0 = x-X0; /* The x,y,z distances from the cell origin */ float y0 = y-Y0; float z0 = z-Z0; /* For the 3D case, the simplex shape is a slightly irregular tetrahedron. * Determine which simplex we are in. */ int i1, j1, k1; /* Offsets for second corner of simplex in (i,j,k) coords */ int i2, j2, k2; /* Offsets for third corner of simplex in (i,j,k) coords */ /* TODO: This code would benefit from a backport from the GLSL version! */ if(x0>=y0) { if(y0>=z0) { i1=1; j1=0; k1=0; i2=1; j2=1; k2=0; } /* X Y Z order */ else if(x0>=z0) { i1=1; j1=0; k1=0; i2=1; j2=0; k2=1; } /* X Z Y order */ else { i1=0; j1=0; k1=1; i2=1; j2=0; k2=1; } /* Z X Y order */ } else { // x0 y0) ? 32 : 0; int c2 = (x0 > z0) ? 16 : 0; int c3 = (y0 > z0) ? 8 : 0; int c4 = (x0 > w0) ? 4 : 0; int c5 = (y0 > w0) ? 2 : 0; int c6 = (z0 > w0) ? 1 : 0; int c = c1 | c2 | c3 | c4 | c5 | c6; // '|' is mostly faster than '+' int i1, j1, k1, l1; // The integer offsets for the second simplex corner int i2, j2, k2, l2; // The integer offsets for the third simplex corner int i3, j3, k3, l3; // The integer offsets for the fourth simplex corner // simplex[c] is a 4-vector with the numbers 0, 1, 2 and 3 in some order. // Many values of c will never occur, since e.g. x>y>z>w makes x=3 ? 1 : 0; j1 = simplex[c][1]>=3 ? 1 : 0; k1 = simplex[c][2]>=3 ? 1 : 0; l1 = simplex[c][3]>=3 ? 1 : 0; // The number 2 in the "simplex" array is at the second largest coordinate. i2 = simplex[c][0]>=2 ? 1 : 0; j2 = simplex[c][1]>=2 ? 1 : 0; k2 = simplex[c][2]>=2 ? 1 : 0; l2 = simplex[c][3]>=2 ? 1 : 0; // The number 1 in the "simplex" array is at the second smallest coordinate. i3 = simplex[c][0]>=1 ? 1 : 0; j3 = simplex[c][1]>=1 ? 1 : 0; k3 = simplex[c][2]>=1 ? 1 : 0; l3 = simplex[c][3]>=1 ? 1 : 0; // The fifth corner has all coordinate offsets = 1, so no need to look that up. float x1 = x0 - i1 + G4; // Offsets for second corner in (x,y,z,w) coords float y1 = y0 - j1 + G4; float z1 = z0 - k1 + G4; float w1 = w0 - l1 + G4; float x2 = x0 - i2 + 2.0f * G4; // Offsets for third corner in (x,y,z,w) coords float y2 = y0 - j2 + 2.0f * G4; float z2 = z0 - k2 + 2.0f * G4; float w2 = w0 - l2 + 2.0f * G4; float x3 = x0 - i3 + 3.0f * G4; // Offsets for fourth corner in (x,y,z,w) coords float y3 = y0 - j3 + 3.0f * G4; float z3 = z0 - k3 + 3.0f * G4; float w3 = w0 - l3 + 3.0f * G4; float x4 = x0 - 1.0f + 4.0f * G4; // Offsets for last corner in (x,y,z,w) coords float y4 = y0 - 1.0f + 4.0f * G4; float z4 = z0 - 1.0f + 4.0f * G4; float w4 = w0 - 1.0f + 4.0f * G4; // Wrap the integer indices at 256, to avoid indexing perm[] out of bounds int ii = i & 0xff; int jj = j & 0xff; int kk = k & 0xff; int ll = l & 0xff; // Calculate the contribution from the five corners float t0 = 0.6f - x0*x0 - y0*y0 - z0*z0 - w0*w0; if(t0 < 0.0f) n0 = t0 = t20 = t40 = gx0 = gy0 = gz0 = gw0 = 0.0f; else { t20 = t0 * t0; t40 = t20 * t20; grad4(perm[ii+perm[jj+perm[kk+perm[ll]]]], &gx0, &gy0, &gz0, &gw0); n0 = t40 * ( gx0 * x0 + gy0 * y0 + gz0 * z0 + gw0 * w0 ); } float t1 = 0.6f - x1*x1 - y1*y1 - z1*z1 - w1*w1; if(t1 < 0.0f) n1 = t1 = t21 = t41 = gx1 = gy1 = gz1 = gw1 = 0.0f; else { t21 = t1 * t1; t41 = t21 * t21; grad4(perm[ii+i1+perm[jj+j1+perm[kk+k1+perm[ll+l1]]]], &gx1, &gy1, &gz1, &gw1); n1 = t41 * ( gx1 * x1 + gy1 * y1 + gz1 * z1 + gw1 * w1 ); } float t2 = 0.6f - x2*x2 - y2*y2 - z2*z2 - w2*w2; if(t2 < 0.0f) n2 = t2 = t22 = t42 = gx2 = gy2 = gz2 = gw2 = 0.0f; else { t22 = t2 * t2; t42 = t22 * t22; grad4(perm[ii+i2+perm[jj+j2+perm[kk+k2+perm[ll+l2]]]], &gx2, &gy2, &gz2, &gw2); n2 = t42 * ( gx2 * x2 + gy2 * y2 + gz2 * z2 + gw2 * w2 ); } float t3 = 0.6f - x3*x3 - y3*y3 - z3*z3 - w3*w3; if(t3 < 0.0f) n3 = t3 = t23 = t43 = gx3 = gy3 = gz3 = gw3 = 0.0f; else { t23 = t3 * t3; t43 = t23 * t23; grad4(perm[ii+i3+perm[jj+j3+perm[kk+k3+perm[ll+l3]]]], &gx3, &gy3, &gz3, &gw3); n3 = t43 * ( gx3 * x3 + gy3 * y3 + gz3 * z3 + gw3 * w3 ); } float t4 = 0.6f - x4*x4 - y4*y4 - z4*z4 - w4*w4; if(t4 < 0.0f) n4 = t4 = t24 = t44 = gx4 = gy4 = gz4 = gw4 = 0.0f; else { t24 = t4 * t4; t44 = t24 * t24; grad4(perm[ii+1+perm[jj+1+perm[kk+1+perm[ll+1]]]], &gx4, &gy4, &gz4, &gw4); n4 = t44 * ( gx4 * x4 + gy4 * y4 + gz4 * z4 + gw4 * w4 ); } // Sum up and scale the result to cover the range [-1,1] noise = 27.0f * (n0 + n1 + n2 + n3 + n4); // TODO: The scale factor is preliminary! /* Compute derivative, if requested by supplying non-null pointers * for the last four arguments */ if( ( dnoise_dx != 0 ) && ( dnoise_dy != 0 ) && ( dnoise_dz != 0 ) && ( dnoise_dw != 0 ) ) { /* A straight, unoptimised calculation would be like: * *dnoise_dx = -8.0f * t20 * t0 * x0 * dot(gx0, gy0, gz0, gw0, x0, y0, z0, w0) + t40 * gx0; * *dnoise_dy = -8.0f * t20 * t0 * y0 * dot(gx0, gy0, gz0, gw0, x0, y0, z0, w0) + t40 * gy0; * *dnoise_dz = -8.0f * t20 * t0 * z0 * dot(gx0, gy0, gz0, gw0, x0, y0, z0, w0) + t40 * gz0; * *dnoise_dw = -8.0f * t20 * t0 * w0 * dot(gx0, gy0, gz0, gw0, x0, y0, z0, w0) + t40 * gw0; * *dnoise_dx += -8.0f * t21 * t1 * x1 * dot(gx1, gy1, gz1, gw1, x1, y1, z1, w1) + t41 * gx1; * *dnoise_dy += -8.0f * t21 * t1 * y1 * dot(gx1, gy1, gz1, gw1, x1, y1, z1, w1) + t41 * gy1; * *dnoise_dz += -8.0f * t21 * t1 * z1 * dot(gx1, gy1, gz1, gw1, x1, y1, z1, w1) + t41 * gz1; * *dnoise_dw = -8.0f * t21 * t1 * w1 * dot(gx1, gy1, gz1, gw1, x1, y1, z1, w1) + t41 * gw1; * *dnoise_dx += -8.0f * t22 * t2 * x2 * dot(gx2, gy2, gz2, gw2, x2, y2, z2, w2) + t42 * gx2; * *dnoise_dy += -8.0f * t22 * t2 * y2 * dot(gx2, gy2, gz2, gw2, x2, y2, z2, w2) + t42 * gy2; * *dnoise_dz += -8.0f * t22 * t2 * z2 * dot(gx2, gy2, gz2, gw2, x2, y2, z2, w2) + t42 * gz2; * *dnoise_dw += -8.0f * t22 * t2 * w2 * dot(gx2, gy2, gz2, gw2, x2, y2, z2, w2) + t42 * gw2; * *dnoise_dx += -8.0f * t23 * t3 * x3 * dot(gx3, gy3, gz3, gw3, x3, y3, z3, w3) + t43 * gx3; * *dnoise_dy += -8.0f * t23 * t3 * y3 * dot(gx3, gy3, gz3, gw3, x3, y3, z3, w3) + t43 * gy3; * *dnoise_dz += -8.0f * t23 * t3 * z3 * dot(gx3, gy3, gz3, gw3, x3, y3, z3, w3) + t43 * gz3; * *dnoise_dw += -8.0f * t23 * t3 * w3 * dot(gx3, gy3, gz3, gw3, x3, y3, z3, w3) + t43 * gw3; * *dnoise_dx += -8.0f * t24 * t4 * x4 * dot(gx4, gy4, gz4, gw4, x4, y4, z4, w4) + t44 * gx4; * *dnoise_dy += -8.0f * t24 * t4 * y4 * dot(gx4, gy4, gz4, gw4, x4, y4, z4, w4) + t44 * gy4; * *dnoise_dz += -8.0f * t24 * t4 * z4 * dot(gx4, gy4, gz4, gw4, x4, y4, z4, w4) + t44 * gz4; * *dnoise_dw += -8.0f * t24 * t4 * w4 * dot(gx4, gy4, gz4, gw4, x4, y4, z4, w4) + t44 * gw4; */ float temp0 = t20 * t0 * ( gx0 * x0 + gy0 * y0 + gz0 * z0 + gw0 * w0 ); *dnoise_dx = temp0 * x0; *dnoise_dy = temp0 * y0; *dnoise_dz = temp0 * z0; *dnoise_dw = temp0 * w0; float temp1 = t21 * t1 * ( gx1 * x1 + gy1 * y1 + gz1 * z1 + gw1 * w1 ); *dnoise_dx += temp1 * x1; *dnoise_dy += temp1 * y1; *dnoise_dz += temp1 * z1; *dnoise_dw += temp1 * w1; float temp2 = t22 * t2 * ( gx2 * x2 + gy2 * y2 + gz2 * z2 + gw2 * w2 ); *dnoise_dx += temp2 * x2; *dnoise_dy += temp2 * y2; *dnoise_dz += temp2 * z2; *dnoise_dw += temp2 * w2; float temp3 = t23 * t3 * ( gx3 * x3 + gy3 * y3 + gz3 * z3 + gw3 * w3 ); *dnoise_dx += temp3 * x3; *dnoise_dy += temp3 * y3; *dnoise_dz += temp3 * z3; *dnoise_dw += temp3 * w3; float temp4 = t24 * t4 * ( gx4 * x4 + gy4 * y4 + gz4 * z4 + gw4 * w4 ); *dnoise_dx += temp4 * x4; *dnoise_dy += temp4 * y4; *dnoise_dz += temp4 * z4; *dnoise_dw += temp4 * w4; *dnoise_dx *= -8.0f; *dnoise_dy *= -8.0f; *dnoise_dz *= -8.0f; *dnoise_dw *= -8.0f; *dnoise_dx += t40 * gx0 + t41 * gx1 + t42 * gx2 + t43 * gx3 + t44 * gx4; *dnoise_dy += t40 * gy0 + t41 * gy1 + t42 * gy2 + t43 * gy3 + t44 * gy4; *dnoise_dz += t40 * gz0 + t41 * gz1 + t42 * gz2 + t43 * gz3 + t44 * gz4; *dnoise_dw += t40 * gw0 + t41 * gw1 + t42 * gw2 + t43 * gw3 + t44 * gw4; *dnoise_dx *= 28.0f; /* Scale derivative to match the noise scaling */ *dnoise_dy *= 28.0f; *dnoise_dz *= 28.0f; *dnoise_dw *= 28.0f; } return noise; }