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Abstract—Accurate prediction of the Air Traffic Control (ATC)
sector capacity is a cornerstone in solving the demand/capacity
imbalance problem in aviation. In this paper, we develop a
methodology, based on the continuous maxflow/mincut theory,
to estimate the reduction of the ATC sector capacity due to
predicted convective weather activity. The meteorological forecast
uncertainty is quantified using Ensemble Weather Forecasting.
We demonstrate how to determine congestion in ATC sectors,
using an example of a realistic sector, also a whole sector
configuration, and propose a way to present the probabilistic
overload and congestion status to support the decision-making
process at the Flow Management Position.
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I. INTRODUCTION

The main task of Flow Management is to achieve the opti-
mum exploitation of the capacities of all Air Traffic Control
(ATC) units (in particular, the Area Control Centre, ACC),
taking into account the staffing situation of the unit and other
impacting factors like weather or technical issues. In this
task in Europe, the Flow Management Position (FMP), an
operational position located in the ACC Ops Room, monitors
the expected traffic in ATC sectors, and adjusts the value of
capacity in view of adverse weather conditions, unpredicted
staffing shortages, equipment failures, etc. When the FMP
detects an excess of traffic over capacity, he/she coordinates
possible traffic flow measures both at the ACC and the Net-
work Manager (NM) levels.

The presence of convective cells reduces the airspace avail-
able for conflict resolution tasks and makes the traffic irregular
and not easy to predict, thus increasing traffic complexity
and reducing the capacity of the sector. The provision of
an accurate prediction of the development of convective cells
inside a sector, a trustworthy forecast and characterization of
the future traffic, and a reliable estimation of the impact of the
convective weather on the sector capacity would lead the FMP
to take anticipated, appropriate, and timely flow measures,
which as a consequence will lead to a reduction of delays.

In this paper, we focus on the development of a methodology
for forecasting the sector capacity reduction due to convective
weather and its application in detection of the sector conges-
tion.

The rest of the paper is organized as follows. In Section II
we review related work on the topic. Section III presents
the overal framework considered in this paper. Section IV
describes the methodology for probabilistic analysis of sector
capacity reduction. We describe the case study we use to
demonstrate the proposed concept in Section V, and present
the example results for this case in Section VI. Section VII
concludes the paper and outlines the future work.

II. RELATED WORK

The continuous maxflow/mincut theory [1] is used as the
starting point in this work, which extends cornerstone discrete
network flow results (maxflow/mincut theorem, Menger’s the-
orem and flow decomposition theorem) to continuous domains.
The previous development of this continuous flow theory and
algorithms was motivated by ATM needs, and ATM applica-
tions of the geometric flow results are presented in [2] and [3].
The prior work on capacity estimation assumed that the obsta-
cles are deterministic, i.e. that their shapes and locations were
known exactly. In this work, we extend the capacity estimation
to the stochastic setting when the adverse weather zones,
defining the obstacles, are given by probabilistic forecasts.

The prior work [4] proposed the methods for establishing
dependence of capacity on weather coverage. In this paper,
weather coverage is not used as the input; instead, the input
consists of an ensemble of weather forecasts. Following [5],
we extend the methods from [4] to study the dependence of
the capacity on the forecasts spatial and temporal uncertainty.

We take into account the severity of the weather and
probabilities of occurrence of the hazardous weather cells
supplied by the forecasts. We treat the airspace as a weighted
region in which the weight of every point represents the
severity and the likelihood of weather hazard at that point.
The geographic spread of the mincuts, taken over the ensemble
weather forecast, visualizes the spatial pattern of capacity
reduction in the sector (probabilistic impact maps in [5]). To
quantify the reduction of the capacity (not the capacity itself),
we compute the available flow capacity ratio as described
in [6].

Nowadays, the FMP monitors the traffic load of each
ATC sector via the Collaboration Human Machine Interface
(CHMI), a standalone application which provides a graphical



interface to display data [7]. The traffic load is usually mea-
sured as the rate of flights predicted to enter the sector in a
1-hour rolling interval, i.e. the entry count, and it is compared
with the Monitoring Value (MV) [8]. The MV is the agreed
number of flights accepted to enter into a reference location
per rolling hour beyond which coordinated actions may be
considered. The MV is not the capacity itself, but normally
close to 90% of real capacity; thus, if the capacity is reduced,
the MV should be reduced in the same proportion. An overload
of 3% over MV is not considered as an overload, it starts to
be an overload once the load reaches 10% over MV.

The efforts made in the past to predict the congestion
of a particular airspace can be grouped into two different
approaches: the separate prediction of traffic load and capacity
values and then its comparison, or the direct prediction of
the congestion status. The first approach is the one followed
by the NM, and the one proposed in [9] for a probabilistic
methodology. The work presented in [10] follows the second
approach to directly predict the activation of ATFM regula-
tions, by using machine learning and historical data. In this
paper, we follow the first approach, where probabilistic traffic
loads and probabilistic monitoring values are predicted, using
the same weather forecasts, and then compared.

III. PROBLEM FRAMEWORK

A. Concept

The framework for this paper is the integration of meteo-
rological (MET) forecast uncertainty into the decision-making
process for FMP under adverse weather; in particular, with
the provision of probabilistic forecasts of traffic loads, sector
complexity, and sector capacity reduction under convective
weather for a forecasting horizon of 8 hours. Thus, the focus is
on the tactical flow management phase. Given the forecast lead
time of 8 hours, and the stochastic evolution of the atmosphere,
the predictions on traffic loads, sector complexity, and sector
capacity are affected by meteorological forecast uncertainty,
so that a probabilistic approach becomes the appropriate one.
In this paper we present an analysis of the reduction of sector
capacity under convective weather.

B. Characterization of Weather Forecast Uncertainty

In this work, weather forecast uncertainty is quantified using
Ensemble Weather Forecasting (EWF) as the probabilistic
prediction technique. It consists in quantifying the uncertainty
via the dispersion in a representative ensemble of possible
meteorological scenarios (hereafter identified as members).
Two types of probabilistic weather forecasts are considered:
ensemble nowcasts and convective-scale Ensemble Prediction
Systems (EPS). Both products provide meteorological vari-
ables in a discrete way, with different time granularities, from
a few minutes for the nowcast to a few hours for the EPS.

Nowcasts start from a given state of the atmosphere, for
example, a storm field provided by radar information, and ex-
trapolate their movement and their temporal development [11].
Nowcast systems work on a regional scale and are quite
reliable for an hour leading time with decreasing accuracy for
longer times. The meteorological information consists mainly
of forecasts of the area with embedded convective cells and,

for the individual cells, their positions, extensions, strengths
and heights of the clouds.

EPS are numerical weather prediction (NWP) systems which
predict future atmospheric conditions by solving dynamics and
physics equations that explain the movements and changes
of the atmosphere. There are three main types of EPS that
address different time and spatial scales in the forecast [12]:
global (forecasting horizon of 3–15 days and with resolutions
of between 30 and 70 km), regional (1-3 days and between
7 and 30 km), and convective-scale (1 day and between 1
and 4 km). Because of the low grid resolution of the global
and regional EPS, they are not expected to predict details of
small-scale systems such as thunderstorms. On the other hand,
convective-scale EPS are able to resolve some of the detail
of large convective systems, such as location and intensity of
thunderstorms.

IV. PROBABILISTIC ANALYSIS OF SECTOR CAPACITY
REDUCTION

We develop a methodology to forecast the reduction of
airspace capacity under convective weather, taking into account
the spatial extent and topology of the weather hazard and the
traffic flow direction. We perform an analysis of ensemble
capacity, including the quantification of capacity reduction as
a function of forecast lead time, spatial scale and severity of
the weather events.

Airspace capacity (and its reduction) is not a simple function
of the weather coverage: the same percentage of airspace
area covered with inclement weather may lead to drastically
different possible traffic flows. Capacity estimation should
consider the shape of hazardous weather cells, as well as their
spatial distribution, since the airspace capacity may depend
on the positions of the storms with respect to each other. For
example, in Figure 1 two scenarios are shown where the same
weather coverage can lead to very different capacities: on the
left, a popcorn convection allows the existence of two traffic
flows; while on the right, a squall line impedes the traffic from
going through the sector. The geometry of the sector also plays
an important role. Last but not least, the capacity depends on
the direction of the flow, i.e., the source/sink edges on the
boundary of the sector through which the traffic enters/exits
the airspace.

Figure 1. Same weather coverage (red polygons are hazardous weather cells)
leading to different possible flows through the sector (black square).

When applying the geometric maxflow/mincut theory, a sec-
tor (on a single flight level) is represented by a 2D polygonal
domain, and hazardous weather is modelled as obstacles which
should be avoided by the flow (Figure 2 left). The aircraft enter
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the sector through a portion of its boundary, called source; the
aircraft exit through the portion of the boundary called sink.
The source and the sink split the boundary of the sector into
two parts called the bottom B and the top T. (If the source
and sink are adjacent along the boundary, i.e., if the traffic just
“clips” the sector, one of B, T may be just a point). The critical
graph of the instance has a vertex for every obstacle, for B and
for T . The edges of the graph connect all pairs of the vertices,
and the weights of the edges represent the distances between
the obstacles (computed using the algorithm in [13]). The
capacity of the sector is defined by the mincut (the bottleneck
for the flow) which is determined by the shortest B − T path
in the critical graph.

Figure 2. Left: A real example of a sector and hazardous weather cells; S and
D are the source and sink (destination). Right: the critical graph with a vertex
for each obstacle, bottom B and top T , weights on the edges representing
the distances between the obstacles, and the shortest B − T path (red),
corresponding to the mincut through the sector.

The maxflow/mincut theory assumes that the flow is mostly
unidirectional (single source/sink pair) because aircraft with
opposing headings are vertically separated. When the sector is
crossed by several flows, with different flows entering/exiting
through different sources/sinks, the maxflows and the mincuts
are computed separately for each source/sink pair.

Vanilla capacity estimation [1], [3] assumes that the ob-
stacles are deterministic, i.e., that their shapes and locations
were known exactly. In this paper, the capacity estimation
is considered for a stochastic setting [5] when the adverse
weather zones, defining the obstacles, are given by probabilis-
tic forecasts. This extended methodology takes probabilistic
weather forecasts as the input, and outputs the probability
distribution of the capacity of the airspace. Unlike in [5],
where the capacity reduction was estimated for a square grid
cells overlayed, here we forecast the capacity reduction for
real sectors in Austrian airspace.

A. Input

Our input consists of the airspace, convective weather, and
flight plans.

1) Airspace: The airspace is a right three-dimensional
prism. Following [6], we define an altitude band as a 1000ft-
high horizontal slice of the airspace, centred on a flight level.
Call a right prism a band prism if its bases belong to the
upper and lower boundaries of a band. The airspace is split
into sectors, with each sector composed of band prisms stacked
one on top of another. Thus the cross-section of a sector by

any horizontal plane within an altitude band is constant; we
identify the sector at the flight level with the cross-section
polygon.

Figure 3 shows the sectors of a particular configuration of
ATC sectors in the Austrian airspace at FL300 and FL350. At
both levels, the airspace is composed of 5 sectors: N15, E15,
B15, S15, and W15. The geometry of some sectors (the cross-
section) may be different at different altitudes. In addition, the
number of sectors may vary between the different flight levels.

(a)

(b)

Figure 3. Example of ATC sectors in the Austrian airspace for FL300 (a) and
FL350 (b).

2) Convective Weather: Hazardous weather cells are treated
as three-dimensional obstacles to be avoided by the aircraft.
The weather obstacles are provided, for each timestep over
a given time horizon, by an ensemble forecast. In this work
we use ensemble forecasts from different weather products:
nowcast for the first hour and EPS forecast for longer-term
horizon (note that the methodology applies to ensemble fore-
cast obtained from an arbitrary weather product). For every
prediction timestep, the ensemble has a member. A weather
obstacle is a right prism, defined by a polygon and a vertical
extent. The upper and lower bases of every obstacle are defined
by an altitude band, i.e., no obstacle starts or ends inside an
altitude band. This way, for a particular prediction time and
an ensemble member, the hazardous weather at each altitude
is a set of polygons (Figure 4).

3) Flight plans: The demand for a sector during a time
interval [t1, t2] is defined by the traffic that plan to pass through
the sector. The flight plan for any aircraft is a sequence of 4D
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(a)

(b)

Figure 4. Example of weather-impacted regions in the Austrian airspace from
nowcast (a) and EPS forecast (b).

waypoints (location and time). Note that for our analysis we
need not only the total (aggregated) flow for the sector, but
also the more fine-grained information on the adjacent sectors
from/to which the aircraft intend to enter/exit the sector, as
well as the altitude. Using the definition in [6], each flow
is identified by a sector transit triplet: entry sector, current
sector, and exit sector. An example is depicted in Figure 5(a),
where three different flows through sector W15 (out of 20
possible flows) are shown: flow 1 (orange) corresponds to
the transit triplet ACC Munchen-W15-ACC Ljubljana; flow
2 (blue) corresponds to the triplet B15-W15-ACC Padova;
and flow 3 (yellow) corresponds to the triplet S15-W15-ACC
Ljubljana. We calculate the capacity for every pair of entry/exit
sectors through which the traffic intends to go. The number of
aircraft in each flow is determined by identifying the sector
entry and exit 4D points (time and location) of the aircraft
trajectories, as well as the origin and destination adjacent
sectors. Formally, for each flow j and each altitude i, an
aircraft is added to the ij-th component of the demand if:
1) it flies at altitude i; 2) it belongs to flow j; and 3) its time
within the sector, defined by the sector entry t0 and exit time
tf , overlaps the interval [t1, t2] (that is, [t1, t2] ∩ [t0, tf ] ̸= ∅).
Following [6], ascending or descending aircraft are treated as
if they fly level at an average altitude (Figure 5(b)).

B. Available Sector Capacity Ratio

The available sector capacity ratio (ASCR) for each time
and ensemble member is the ratio of the sector capacity
under the given weather constraints to the maximum possible

(a)

(b)

Figure 5. Example of flows through a sector in 2D (a) and the altitude band
corresponding to the average of the entry and exit altitudes for ascending and
descending aircraft in 3d (b).

capacity of the sector without weather systems. The ratio is
a non-dimensional value ranging between 0 and 1, where
0 represents a completely blocked airspace with no usable
capacity and 1 represents an airspace without constraints.
ASCR is computed by averaging the capacities for all flows
through the sector, as described next.

Following [6], we compute the available flow capacity
ratio (AFCRij) for every altitude band i and every pair j
of entry/exit sectors. Similarly to ASCR, the available flow
capacity ratio ranges from 0 to 1 and represents the ratio of the
weather-impacted airspace capacity to the maximum capacity
without obstacles for flow j at altitude i:

AFCRij =
Wmcut

ij

Oij
, (1)

where Wmcut is the mincut through the domain in the
presence of weather obstacles and O is the mincut without
obstacles (simply the distance between the bottom B and the
top T of the sector, for the given altitude and entry/exit sectors
pair).

After obtaining the available capacity ratio for flow j at
all altitudes, the total available flow capacity ratio for flow j,
AFCRj , is computed as the weighted average over the alti-
tudes:

AFCRj =
n∑

i=1

Wij ∗AFCRij , (2)

where n is the number of altitude bands and the weight
Wij is defined as a ratio of the number of aircraft in altitude
i and flow j to the total number of aircraft in flow j (if the
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denominator is 0, Wij is set to 0 too.) Finally, the available
sector capacity ratio is determined as follows:

ASCR =
F∑

j=1

Wj ∗AFCRj , (3)

where F is the total number of flows and Wj is the weight
associated with flow j, determined by the ratio of the number
of aircraft in flow j to the total demand (if no aircraft pass
through the sector in the considered time interval, i.e., if the
total demand is 0, then Wj keeps the value from the previous
time step; if no aircraft pass through the sector at the first
time interval of the prediction, the values of Wj are set to
Wj = 1/F , i.e., all flows within the sector are considered of
the same weight.)

C. Probabilistic Sector Capacity Reduction

The probability distribution of the available sector capacity
ratio for each sector is obtained by constructing and analysing
the ensemble capacity forecast. For each member m of the
ensemble forecast, the available sector capacity ratio ASCRm

is computed. The cumulative distribution is then calculated by
counting the number of ensemble members that have ASCR
larger or equal to a value x and dividing by the total number
of ensemble members M :

P (ASCR ≤ x) =

∑M
m=1 Xm(x)

M
, (4)

where Xm(x) = 1 if ASCRm ≤ x, and 0 otherwise.

D. Weather-Dependent Capacity

The FMP monitors the traffic load of each ATC sector. The
traffic load can be measured as the rate of flights predicted to
enter the sector in a 1-hour rolling interval, i.e. the entry count.
The FMP compares the traffic load with the capacity of the
sector, expressed as the Monitoring Value. Next, we show how
the nominal MV is reduced making use of the ASCR values
previously determined.

First, let us define the time period Pk in which we want to
compare the traffic load with the capacity:

Pk = [TP + (k − 1) δt, TP + (k − 1) δt+∆t) , k = 1, 2, . . . ,
(5)

where TP is the time at which the prediction is performed,
δt is the time step, i.e., the difference between the start times
of two consecutive time periods, and ∆t is the duration of
each period. For example, for the entry count and the MV, it
is typical to use δt = 20 min and ∆t = 60 min.

Next, since the ASCRs are provided at discrete times, a
right-continuous step function is created from these values:
a piecewise constant function whose value at time t is the
ASCR value provided for the immediately prior discrete time.
For each ATC sector s and weather ensemble member m, let
us denote this function as ASCR

[m]
s (t).

Since the ASCR may take different values while in one time
period Pk, we define the mean ASCR for period k, ASCR

[m]

sk ,

as a representative value of the sector status in that said period.
It is obtained as follows:

ASCR
[m]

sk =
1

∆t

∫ TP+(k−1)δt+∆t

TP+(k−1)δt

ASCR[m]
s (t) dt. (6)

Gathering the results for all weather members, one ob-
tains a stochastic mean status of the sector, ASCRsk, which
follows a categorical distribution; its corresponding proba-
bility mass function is psk,ASCR (y) = 1/M , with y ∈{
ASCR

[1]

sk , ASCR
[2]

sk , . . . , ASCR
[M ]

sk

}
.

The weather-dependent MV for ensemble member m,
Wx MV

[m]
sk , is obtained by multiplying the nominal moni-

toring value by the mean ASCRs:

Wx MV
[m]
sk = ASCR

[m]

sk MVs (7)

where MVs is the standard MV of sector s.
Finally, gathering results for all members, as explained

before, one gets the aggregated weather-dependent capacities

Wx MVsk = ASCRskMVs (8)

When the considered time periods are long (e.g., one hour),
it is common that the period Pk contains the transition time
between the two weather products, TT . When this happens,
it is not possible to obtain ASCR

[m]

sk because there is no
correspondence between the members of the two weather
products. In that case, ASCRsk is computed in a different
way. First, the mean ASCR is determined separately before and
after the transition time, ASCRsk,− and ASCRsk,+. Then,
the mean ASCR for the sector is obtained as a weighted sum
of the two mean ASCRs

ASCRsk =
TT − TP − (k − 1) δt

∆T
ASCRsk,−

+
TP + (k − 1) δt+∆T − TT

∆T
ASCRsk,+

(9)

Since the two addends are independent random variables,
the probability mass function of ASCRsk is obtained as the
convolution of these two terms.

V. CASE STUDY

The selected case study corresponds to June 12th, 2018, a
day with high convection intensity.

A. Airspace

The Austrian airspace under the control of ACC WIEN
has been selected, which is divided into five geographical
regions (B, E, N, S and W), and each region into five vertical
layers (from 1 to 5). In total, 38 elementary volumes are used
to define this airspace, leading to near 60 possible different
ATC sectors and 190 different sector configurations. The
configuration chosen is 10A1.
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B. Weather

Two weather products are considered (the last available
forecasts at 12:00 are used):

• FMP-Met Ensemble Nowcast. Observations were ob-
tained from OPERA (Operational Programme for the Ex-
change of Weather Radar Information) radar composites
(instantaneous surface rain rate) and SAF (Satellite Ap-
plication Facilities) satellite products (convective rainfall
rate and cloud top height) [14]. The Short Term Ensemble
Prediction System (STEPS) method is used to generate
the ensemble, composed of 15 members. We use the
nowcast generated at 11:45 and interpolate it every 5
minutes. Convective cells are identified at a reflectivity of
38 dBz and enlarged with a safety margin of 13.5 NM.
A common cloud top height has been also considered
(flights can overfly cells with a margin of 5000 ft).

• COSMO-D2-EPS. Convection-permitting EPS composed
of 20 members. We use the forecast generated at 09:00
and interpolate it every 15 minutes. Convective areas are
identified using two convection indicators: Lifted Index
(LI) and Precipitation Intensity (PI). Those areas where
LI ≤ 4 and PI > 5 are considered to be impermeable for
the flights. As in the nowcast data, to define the weather
obstacle, these impermeable areas are enlarged with an
additional margin of 13.5 NM.

C. Traffic

Historic flight data (flight plans) of traffic crossing LOVV
on the selected times are obtained from Eurocontrol’s R&D
Data Archive [15]. A total of 2961 flights are considered in
the application. The traffic consists of the aircraft airborne at
12:00 or expected to take-off in the next 8 hours which plan to
cross the Austrian airspace plus a surrounding area of 50 NM.

VI. RESULTS

In this section, we present an example of the resulting ASCR
distribution and the corresponding reduced weather capacity
for one sector (B15) of the Austrian airspace on June 12, 2018
between 12:00 and 20:00.

A. ASCR Distribution

Figure 6 shows the ASCR distribution for sector B15 for the
whole period of observations. For the first hour, each boxplot
represents ASCR distribution over 15 nowcast members for
the 5-minutes intervals. Then, between 13:00 and 20:00, the
ASCR distribution is based on COSMO-D2-EPS weather prod-
uct. In the figure, each boxplot represents ASCR distribution
over 20 EPS members for the 30-minutes time period. The
capacity gradually decreases until 13:00, approximately, and
then gradually increases.

We noted that the variance of the nowcast product generally
increases with time. EPS’s prediction pattern differs from that
of the nowcast. The overall observation is that the nowcast data
is well suited to provide a reliable basis for capacity reduction
estimations, while the longer-term weather forecast products
need to be advanced and adjusted to serve that purpose.

Figure 6. ASCR distribution for sector B15.

B. Reduced Weather Capacity

The weather-dependent MV, Wx MVsk, for sector B15 is
shown in Figure 7 for the time periods between 12:00 and
20:00, and with δt = 20 minutes and ∆t = 1 hour. The MV
is represented as a heatmap, where the color for each value
represents the probability of obtaining that particular value;
the darker the color, the higher the probability. The 5th and
95th percentiles are represented as small black squares, and the
50th percentile (i.e., the median) as a small black diamond. The
median represents the middle value, and the difference between
the two percentiles is a measure of the dispersion. The nominal
MV is also represented in this figure as a blue line. Regarding
the median, it can be seen that the capacity starts with some
reduction, it progressively further decreases during the first
hour, remains at low values until 14:30, and then fully recovers,
although for some weather members significant reductions may
be present (as indicated by the heatmap and the 5th percentile).

Figure 7. Weather-dependent MV for sector B15; δt = 20 minutes, ∆t =
1 hour.

C. Application: Sector Congestion

Next, the probabilistic capacity reductions are applied to
determine the congestion of different ATC sectors belonging
to a particular sector configuration.

The probabilistic air traffic is predicted by the trajectory
predictor described in [16]. This traffic is affected by the
same adverse weather considered for the capacity reductions.
The trajectory prediction takes into account three sources of
uncertainty: 1) the meteorological uncertainty inherent to the
weather forecast; 2) the operational uncertainty linked to the
storm avoidance strategy; and 3) the uncertainty in the take-off
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time. For different flights, it is assumed that the meteorological
uncertainty is fully correlated (as they all share the same
weather information) whereas the uncertainty in the initial
conditions and in the operational uncertainty are statistically
independent. From these flights, the entry count for ATC sector
s, period k, and ensemble member m, is determined, E[m]

sk ;
which is a probabilistic count because of the second and third
sources of uncertainty. Marginalizing the entry counts from all
ensemble members, one obtains the entry count of the sector,
Esk.

The relative difference between the entry count and the
MV is known as relative overload. The relative overload for
ensemble member m is obtained as:

ROL
[m]
sk =

E
[m]
sk

Wx MV
[m]
sk

(10)

Since Wx MV
[m]
sk is a deterministic value, ROL

[m]
sk is just the

random variable E
[m]
sk scaled by Wx MV

[m]
sk . Once ROL

[m]
sk

has been obtained, ROLsk is obtained again by marginalizing
over the weather ensemble members.

As previously addressed, when the period Pk encompasses
the transition time between the two weather products, then
E

[m]
sk cannot be determined because there is no correspondence

between the members of the two weather products. In that
case, the entry count is determined separately before and
after the transition time, and then they are added to directly
determine Esk. Then, ROLsk is computed assuming that
Esk and Wx MVsk are statistically independent: ROLsk =
Esk/Wx MVsk, and the probability mass function of ROLsk

is obtained as the Mellin convolution [17] of the numerator and
the denominator.

The relative overload of sector B15 is displayed in Figure 8.
The overload is certainly large for the earliest periods, which
is a consequence of high counts and reduced capacities.
Afterwards, the overload is reduced. For the latter periods, the
median is distinctly below 1 but an overload is still possible
since the 95th percentile is sometimes above 1.1. Notice that
the dispersion is quite large, and the median is much closer
to the 5th percentile than to the 95th one. Again, it is quite
large for the first periods and smaller for the last ones. Notice
that the vertical axis has been capped at 3.0 and that the 95th
percentile is beyond that number for periods between 12:00
and 15:00.

Nowadays, the FMP tools to monitor the airspace use a color
code to represent the congestion status of the sectors [7]:

• Green: traffic load is acceptable, up to 90% of MV.
• Yellow: traffic load is high, between 90% and 100% of

MV.
• Orange: traffic load is very high, between 100% and 110%

of MV.
• Red: traffic load is unacceptable, over 110% of MV.

Since the overload is now probabilistic, the color code needs
to be adapted. We propose the following scheme based on
two parameters: the percentiles 50 and 95 (Z50 and Z95). The
code is given by the 2-entry table shown in Figure 9. One
can see that including the dispersion of the ROL distribution
(off-diagonal cases) always makes the prediction more severe:

Figure 8. Entry relative overload for sector B15; δt = 20 minutes, ∆t =
1 hour.

green can become yellow and even orange, yellow can become
orange, and orange can become red. This is because there is
a fair chance that the relative overload in these off-diagonal
cases is higher than the one predicted by Z50.

Figure 9. Color code for the probabilistic overload.

The status of all the sectors that make up sector configura-
tion 10A1 is shown in Figure 10, for time periods between
12:00 and 20:00, corresponding to the entry count for 1-
hour periods (∆t = 1 hour), calculated every 20 minutes
(δt = 20 minutes). The status of the sector configuration is
determined from the color state of its constituent sectors: green
if the traffic load is acceptable for all sectors, yellow if it is
high for at least one sector, orange if it is very high for at least
one sector, and red if it is unacceptable for at least one sector.

In this example, most sectors present unacceptable traffic
loads for some periods, and the sector configuration 10A1
is unacceptable for most of the time periods (in particular,
from 12:00 until 18:00). Some sectors are overloaded at the
beginning and then they recover (e.g., W3), and other sectors
get overloaded between 14:00 and 16:00, approximately (e.g.,
S12). Sector E45 is the only one which does not become
unacceptably loaded. These results indicate that traffic flow
measures would be needed in this case study.

VII. CONCLUSIONS AND FUTURE WORK

We have presented a methodology for forecasting the
reduction of sector capacity due to convective weather. A
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Figure 10. Congestion status for sector configuration 10A1; δt = 20 minutes,
∆t = 1 hour.

probabilistic approach is used to take into account the me-
teorological forecast uncertainty, which is quantified using
Ensemble Weather Forecasting. This methodology, based on
the continuous maxflow/mincut theory, considers the spatial
extent and topology of the weather hazard and the traffic
flow direction. It has been applied to a realistic case study,
in which the capacity reductions have been used to determine
the probabilistic overload of a particular sector configuration.

The potential benefit one could expect of this methodology
is the support to take anticipated, appropriate, and timely
tactical flow measures under adverse weather (better-informed
decision-making process for FMPs) and, as a consequence, the
enhancement of ATM efficiency, which will ultimately reduce
flight delays and improve passenger journeys.

The transition between the two weather products, from
nowcast to EPS forecast, has resulted in discontinuities at the
switching time and it has also required an adaptation of the
methodologies. It is clear that a seamless weather product with
an outlook horizon of several hours (8 hours in our case)
would lead to smoother predictions. We believe that further
investigations are needed in order to develop such a high-
quality weather product and use it for probabilistic capacity
estimations. We identify the development of such a proba-
bilistic seamless product as a topic for future meteorological
research.

This paper has been developed within the FMP-Met project.
At the end of this project, the goal of achieving the Technology
Readiness Level 1 (TRL 1) was achieved. The main step for
the next phase is the development of a prototype tool, in close
collaboration with FMPs, implementing the FMP-Met concept.
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