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Abstract—This paper provides a mathematical method
for airspace capacity estimation. It is motivated by the
need to assess the impact of unmanned aircraft systems
on low altitude airspace operations. We define capacity as
a minimum of metric-specific phase transition thresholds.
The definition is flexible to accommodate a wide variety of
metrics defined for the airspace and hence, can be used to
compare different unmanned traffic management system
approaches. We provide a proof of concept using a metric
based on the size of de-confliction problems. The probabil-
ity of occurrence of large conflicts show phase transition
as the traffic density is increased. The traffic density at
phase transition i.e. the metric-specific capacity measure,
increases with decreasing minimum separation tolerance.
Traffic management systems which allow for a higher
proximity between aircraft should therefore improve the
airspace capacity. Further work must incorporate a wider
range of metrics and sense and avoid algorithms for a
more rigorous validation and application of our airspace
capacity estimation method.
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I. Introduction

Airspace is utilized today by far lesser aircraft than it
can accommodate. Several ‘self-separation’ design concepts
and decentralized control strategies that transfer some of the
separation responsibility to the cockpit have been proposed
to increase this aircraft volume[1]–[3]. However, a theoretical
approach to airspace capacity for measuring any such increase
is not well elaborated. Conventional approaches using air
traffic complexity measures such as Monitor Alert Parameter
(MAP)[4] or Dynamic Density (DD)[5,6] based on controller
workload become less relevant with the advent of automated
small-unmanned aircraft systems.

The low altitude uncontrolled airspace primarily used by
general aviation is further underutilized owing to the low
manned Visual Flight Rules (VFR) air traffic densities. The
next phase of unmanned aviation with Beyond Line Of Sight
(BLOS) operations is expected to fill that same airspace with
traffic, orders of magnitude higher. So, how many aircraft can
the airspace accommodate under a given set of technological
capabilities, operation requirements, protocols and conditions
such as safety, stability and noise levels?

We seek to answer the question with a theoretical definition
of airspace capacity that is derived from the metrics defined

on the airspace. The metrics account for the variety in the
conditions, necessary to be satisfied simultaneously. As these
conditions would change based on the traffic management
system used, our definition also allows for comparison of
different control strategies. For example, if two decentralized
airspace concepts have airspace capacities greater than the
expected demand of Unmanned Aircraft System (UAS) traffic,
our definition allows to measure which has the higher capacity
and hence is preferable.

Existing approaches to measuring airspace capacity are
designed to assess manual controller workload. The future
air traffic control (ATC) may be a mix of both manual
and automated with most of the recent approaches inclined
towards the latter. Capacity definition should therefore be
less dependent on the nature of ATC although it may help
assess the choice of the type of control, e.g. - centralized vs
decentralized control. Attempts at such a definition have been
made but could be improved further. Section II presents a
discussion on the past approaches to airspace capacity and
explains the arguments further.

Our definition of airspace capacity and the estimation
method are presented in Section III and IV respectively. For
a given metric, there is a certain acceptable value up to
which the airspace is considered operable. The number of
aircraft at which the metric attains that acceptable value
is the metric-specific capacity. Given a set of metrics with
respective acceptable limits, the minimum of all the metric-
specific capacities evaluated is then the airspace capacity. We
further refine our generic definition to account for convergence
to the acceptable metric values in probability. In other words,
the airspace has exceeded its metric-specific capacity if the
metric exceeds its acceptable limit with high probability.
The metric-specific capacity is the threshold at which this
probability phase transition occurs.

As a first application of our definition, we choose the size
of the largest de-confliction problem that arises for a given
traffic density as our metric. Conflict is simply defined as
a loss of minimum separation. The allowable limit of the
metric is based on aircraft conflict avoidance literature and air
transportation practice. As many as 100,000 unmanned flights
a day are expected in a metropolitan region [7]. We therefore
simulate this traffic for two separate metropolitan regions,



namely the San Francisco Bay Area in the US and Norrköping
municipality in Sweden and evaluate the airspace capacity
for each region based on the phase transition thresholds.
This sample application is described in detail in section V.
Preliminary results are presented in section V-C.

A wider application of our definition would require the use
of several metrics and more complex simulations that utilize
proposed and practised conflict resolution algorithms. Section
VI concludes this extended abstract with a discussion of ideas
for the same and proposed extensions of the work, pointing
out the ones to be potentially included in the final manuscript.

II. Literature Review

The capacity of an airspace can be fundamentally under-
stood as the maximum number of aircraft that it can safely
accommodate. Capacity estimation approaches in literature
evaluate this safety from controller and pilot workload under
a given set of constraints [8]–[11]. They base this on air
traffic complexity measures such as MAP, the maximum
number of aircraft an ATC controller can handle at any given
time and DD, a weighted sum of factors that affect the air
traffic complexity. Furthermore, they are defined based on an
assumption of a structured airspace and air traffic management
(ATM) that includes monitors, sectors and airways.

However, first of all, manual controller workload becomes
less relevant as the industry moves towards automation.
Dynamic density definition also varies in terms of factors
included and weights assigned to them and therefore does not
have a single agreed upon model in literature [12]–[14]. Hence,
any capacity estimation based on such measures becomes even
less relevant. Second, unmanned aviation needs unmanned
traffic management to the extent possible. A proper capacity
definition should therefore not be restricted to the type of
control, manual or automated. Finally, UAS traffic will inhabit
an airspace that may or may not be structured. So, the airspace
capacity should also not be restricted to an assumption of
structure.

Future UAS operations may be free flight by nature i.e.
individual flights could prefer responsibility for determining
their own courses independent of a global plan or system.
UAS Traffic Management (UTM) should therefore support
user preferred flight trajectories to the extent possible. ATM
architectures with the same objective for manned free flight
were researched by Bilimoria et. al at NASA as part of
their Distributed Air/Ground Traffic Management (DAG-TM)
concept[2,15]–[17]. DAG-TM is characterized by distributed
information sharing, decision-making and/or responsibility
among a triad of agents: the Flight Deck (FD), Air Traffic
Service Provider (ATSP), and Airline Operational Control
(AOC). From a UTM perspective, this is analogous to the on
board autopilot (FD), the UTM service provider (ATSP) and
the UAS operator/command center (AOC).

The above NASA work presents another approach to
airspace capacity that can compare distributed and centralized
approaches[16]. It is independent of structure or controller
workload. For a given representative area, the utilized airspace
is the percentage of that area covered by aircraft with a defined
protected zone around them. It establishes a 90.7% theoretical
capacity on airspace utilization, assuming a minimum sepa-

Fig. 1: Optimal packing allowing only one flow direction [16]

ration of 5 nautical miles and under the consideration of a
unidirectional uniform speed packing of the aircraft (Figure 1).
Such an approach is dependent on the reference area selected
and unidirectional consideration means not everyone gets from
origin to destination. Hence, this capacity definition, although
quite insightful, is yet restrictive.

Our definition of airspace capacity utilizes all these insights
and is based on metrics defined for an airspace. The DAG-TM
literature gives some types of metrics that can be used to apply
our capacity definition to evaluate any UTM architecture for
free flight, namely - Performance, Safety and Stability. We
next present our formal definition of airspace capacity. A
discussion of how the above metrics can be incorporated in
the capacity estimation is covered in our proposed extensions
of the current work.

III. Capacity Definition

A metric M is a family of random variables parametrized by
an integer which in our case represents the expected number
of aircraft. The metric evaluated for a specific integer n is
denoted by M(n). We require that M is non-decreasing, i.e.
for n′ > n, P{M(n′) < M(n)} tends to 0 as n increases (i.e.
M(n′) majorizes M(n)).

For an airspace, given a metric M with an acceptable level
M ′, the metric-specific airspace capacity is the number of
aircraft N , such that an additional aircraft makes the proba-
bility that the metric exceeds its acceptable level, very high.
In other words, the number of aircraft N is the metric-specific
airspace capacity, if for any small ε > 0 and some η ∈ (0, 0.5),
P{M(bN − εc) > M ′} < η and P{M(dN + εe) > M ′} > 1−η.

Typically, more than one metric must be simultaneously
considered when evaluating the capacity of an airspace. Hence,
we expand our definition over the set of metrics under
consideration.

Let MS = {M1,M2,. . . ,Mk} be the set of metrics defined on
a set of aircraft A for a given airspace. Each Mi, i ∈ [1, k], is
evaluated for a given number of aircraft n and must be a non-
decreasing function as per our convention. Let M ′

i , i ∈ [1, k],
be the acceptable levels of the corresponding metrics. Then
we can define the number of aircraft Ni as the metric-specific
airspace capacity, if for any small ε > 0 and some η ∈ (0, 0.5),
P{Mi(bNi − εc) > M ′

i} < η and P{Mi(dNi + εe) > M ′
i} >

1 − η. The overall capacity of the airspace is then N =
min(Ni).



This airspace capacity definition includes deterministic
cases. For example, let us evaluate the capacity N of a holding
airspace around an airport. Let the metric M be the negative
of average miles in trail separation between the aircraft in the
holding pattern. For simplicity, we will assume the holding
airspace is a circle and two aircraft can only be in sequence
and not next to each other. For a given number of aircraft n,
M = −C/n, where C is the circumference of the circle. Let the
acceptable average separation be M ′. Then the capacity of the
holding airspace is N = b−C/M ′c. If the number of aircraft in
the holding pattern is even one less than N , P{M > M ′} = 0.
If the number of aircraft in the holding pattern is even one
more than N , P{M > M ′} = 1.

The above example shows a sharp transition in probability.
N is therefore defined as a sharp phase transition threshold.
The above formulation is therefore a strong form definition of
airspace capacity. It forces N to be a single number. For more
complex metrics, this N needs to be evaluated based on air
traffic simulation that computes the metrics by varying the
traffic densities. As the number of aircraft n become large,
the airspace capacity may not necessarily be a single number
but a transition range instead. A weak form of the definition
would allow N to be a phase transition range.

Suppose, each Ni is a range [Ni,l, Ni,r]. Then Ni is
the metric-specific airspace capacity range, if for any small
ε > 0 and some η ∈ (0, 0.5), P{Mi(bNi,l − εc) >
M ′

i} < η and P{Mi(dNi,r + εe) > M ′
i} > 1 − η.

The overall capacity range of the airspace is then N =
[min(Ni,l), max(Ni,r)].

IV. Capacity Estimation Method

In the next section, we describe a sample application of
our capacity definition by abstracting the airspace as a graph.
It is noteworthy that since our definition presents capacity
as a phase transition threshold, phase transition results from
the theory of random geometric graphs apply directly, if the
graph nodes are chosen uniformly at random and the metric
does not decrease when edges are added to the graph.

In detail, let n ∈ N, r ∈ R+ be an integer
and a non-negative number respectively. A
random geometric graph (RGG) is a graph whose nodes
are n randomly placed points in a given region, and whose
edges connect two vertices u and v if and only if the distance
between them is less than r: |uv| < r.

A property Π (of a graph) is formally defined as
a subset of all graphs on n vertices. For instance,
connectedness is a property that contains all connected
graphs, tree is a property that contains all trees,
having a connected component of size at least 17 is a
property that contains all graphs that have a connected
component of size at least 17, etc. (This formalism is a bit
heavy: it is much more intuitive and common to speak about
“a connected graph” instead of “a graph belonging to the
connectedness property”, about “a tree” instead of “a graph
belonging to the tree property” and so on).

A property is called monotone if adding edges to the graph
does not break the property, or formally, if the graph with
added edges still belongs to the property. Thus, connectedness
and having a connected component of size at least 17 are

monotone, but tree is not.
Now, consider RGGs for different values of r. As r increases,

the graph gets “more and more edges”: if |uv| < r, then also
|uv| < R for any R > r. A fundamental result in the RGG
theory [18] says that any monotone property Π of RGG has a
“sharp threshold” rΠ: for r that are smaller than the threshold,
the probability of observing a RGG with the property Π is
small; on the contrary, for r above the threshold, the RGG
will have the property with probability close to 1.

Our definition of airspace capacity is inspired by this result.
The snapshot of an airspace at a given time can be abstracted
as a graph. The aircraft are the vertices of the graph (Figure
3). Aircraft in conflict are connected by an edge. So, the first
capacity estimation method is to use threshold results on such
a graph straight away to estimate airspace capacity provided
the associated assumptions are satisfied.

However, as is the case with the sample application discussed
next, the associated assumptions may not always be satisfied.
For example, threshold existence for monotone properties is
only proven under the assumption of a uniform distribution
over the randomly located vertices. Unmanned traffic may
not necessarily be uniformly distributed. In such a scenario,
the second method of capacity estimation is to simulate the
traffic and the range where the probability phase transitions
for the chosen metrics occur. Our sample application shows
an example of this second estimation method.

V. Sample Application

For an application of our generic capacity definition to
low altitude airspace with unmanned air traffic, we use the
following metric: the size of the largest de-confliction problem
observed for a given traffic density. We assume a minimum
allowable separation between two UASs. The measure of the
airspace capacity is therefore the range, where the probability
that the computed metric exceeds the acceptable size of the
largest de-confliction problem, shows a phase transition. We
investigate how the metric behaves w.r.t. the traffic intensity
and the conflict radius (the minimum allowable separation).
The formal definitions follow.

A. Metric Definition

We use the model and approach from [7] and consider UAS
with strictly vertical takeoff and landing, flying on a fixed
flight level as shown in Figure 2. All aircraft are at the same
level because with an under 400ft restriction on commercial
UAS operations[19], there is very little room for multiple levels.
Thus, our setup is two-dimensional – any conflict between the
drones may happen only due to the loss of minimum lateral
separation.

To determine the size of the de-confliction problem, we
follow a cluster based analysis as defined and discussed by
Durand[20] and Bilimoria[21]. A snapshot of the airspace is
abstracted as a graph (Figure 3). The vertices of the graph are
the aircraft, and two vertices are connected when the aircraft
are in conflict, i.e. when the distance between them is smaller
than an allowable minimum separation r. Each connected
component of the graph thus represents a set of aircraft to
be jointly de-conflicted (called a cluster). The cardinality of



Fig. 2: A typical UAS flight path

this set is the number of vertices in the component, or the
size of the de-confliction problem (cluster size). Our metric is
the size of the largest de-confliction problem observed in the
snapshot i.e. the size of the largest component.

Fig. 3: Abstraction of an airspace snapshot as a graph with
cluster sizes indicated. (Aircraft in conflict are shown by red
dots. The conflict pairs are connected by a black line. The

arrows indicate the heading of the aircraft.)

Since transportation practice tends to eliminate all free de-
confliction problems with more than three vehicles, we choose
the acceptable size of the largest de-confliction problem as
3 and use de-confliction problem size greater than 3 as the
definition of large. De-confliction literature as elaborated in [7]
shows that this number might improve in future for automated
real time resolutions.

B. Simulation

We use the simulation setup from[7]. The airspace is
modeled as a cuboidal volume LWH defined by a rectangular
area extruded to a given height H. Each UAS is a quadruple
(o, d, h, t) i.e. it has an origin, destination, height and start
time. A typical flight was shown in figure 2. The flights’
origins and destinations were generated randomly based on the
population density over the rectangular area. This preserves
the actual shape of the geographical area and the volume of
airspace used.

The total number n of flights expected during the day was
given, and the intensity of the traffic starting or ending at

a point p of the domain was proportional to the population
density at p (that is, the starting times of the flights from
p form a Poisson process with the rate proportional to the
density). The simulations were run in two regions: Bay Area
in the US (Figure 4) and Norrköping municipality in Sweden
(population density data courtesy of[22]). In each of the regions,
we simulated 6 days of traffic, varying n from 10 to 200,000
flights a day and r from 5m to 300m. We used the size of the
largest component in the conflict graph as the measure M ,
and set M ′ = 3.

Fig. 4: Population Density Map of the Bay Area [23]

C. Results

Figure 5 shows the probability P{M > M ′} of observing
large de-confliction problems (clusters of size greater than 3)
when the conflict distance is r = 300m. It can be seen that the
probability goes from 0 to 1 around n ∼ 30000 for Bay Area
(left) and around n ∼ 15000 for Norrköping (right). These
numbers define the capacities of the airspaces over the regions
(under flight level assumption as per V-A). .

Naturally, it is possible that with the advance of the conflict
detection and resolution techniques and hardware, the conflict
threshold r will decrease from 300m (which was used in our
simulations above and also in[7]). We therefore experimented
also with the whole range of values for r < 300m. Further
figures show the probability distributions P{M > M ′} for the
different cases considered: Figures 6, 7 show the results for
Bay Area, and Figures 8, 9 – for Norrköping.

It is noteworthy that Figures 7, 9 actually show the entire
band of capacity range in light blue and green over all the
combinations of the minimum separation and traffic densities
chosen. The above mentioned single capacity number are the
centre values of the respective capacity ranges. The airspace
capacity in general increases with decreasing minimum sepa-
ration tolerance.

VI. Conclusion and Future Work

Our preliminary results show that the probability of observ-
ing large de-confliction problems exhibit quite sharp thresholds
at the airspace capacity. Modes of operations with (n, r) in
the blue areas on Figure 7 (right) and Figure 9 (right) are very
unlikely to exceed the capacity, while operating in the yellow
areas will almost surely exceed the capacity leading to large
de-confliction problems. The (thick) regions that separate blue
from yellow show the relations between the ”critical” traffic



Fig. 5: P{M > M ′} as function of n (for r = 300m). Left: Bay Area. Right: Norrköping.

Fig. 6: Bay Area. Left: P{M > M ′} as function of n for various r. Right: P{M > M ′} as function of r for various n.

Fig. 7: Left: P{M > M ′} as function of both n and r, right); Bay Area. Right: The top view of the graph.



Fig. 8: Norrköping. Left: P{M > M ′} as function of n for various r. Right: P{M > M ′} as function of r for various n.

Fig. 9: Left: P{M > M ′} as function of both n and r, right); Norrkoöping. Right: The top view of the graph.

intensity and conflict radius. We believe that the graphs like
these will help the authorities in quantifying the tradeoffs
between the allowable density of the UAV traffic (n) and the
conflict detection and resolution capabilities (r).

It is of interest to estimate the airspace capacity for
other values of allowable limits M ′, and more generally –
under a wider range of metrics M . The current sample
application is based on a simple assumption of conflict as
loss of minimum separation and doesn’t include any conflict
avoidance algorithm as part of the simulation. However, taking
heading into consideration and using a conflict avoidance
technique widely accepted by the aviation community would
lead to better bounds on the airspace capacity.

One of the most important concerns that the UTM com-
munity is currently facing is to measure the volume of
unmanned aircraft that can be accommodated in the existing
airspace based on considerations of system safety, system
performance, spectrum required for communication and noise
levels. Our definition enables us to respond to that concern.
The final manuscript submission will include stricter results
on aircraft capacity based on system safety considerations
with aircraft heading and conflict resolution accounted for.
Airspace capacity estimates based on the other aforementioned

considerations will be presented in future work on extended
applications of our airspace capacity definition.
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